Peroxisome proliferator-activated receptor-γ co-activator 1α-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency

Timothy R. Koves, Ping Li, Jie An, Takayuki Akimoto, Dorothy Slentz, Olga Ilkayeva, G. Lynis Dohm, Zhen Yan, Christopher B. Newgard, Deborah M. Muoio

Research output: Contribution to journalArticle

334 Citations (Scopus)

Abstract

Peroxisome proliferator-activated receptor-γ co-activator 1α (PGC1α) is a promiscuous co-activator that plays a key role in regulating mitochondrial biogenesis and fuel homeostasis. Emergent evidence links decreased skeletal muscle PGC1α activity and coincident impairments in mitochondrial performance to the development of insulin resistance in humans. Here we used rodent models to demonstrate that muscle mitochondrial efficiency is compromised by diet-induced obesity and is subsequently rescued by exercise training. Chronic high fat feeding caused accelerated rates of incomplete fatty acid oxidation and accumulation of β-oxidative intermediates. The capacity of muscle mitochondria to fully oxidize a heavy influx of fatty acid depended on factors such as fiber type and exercise training and was positively correlated with expression levels of PGC1α. Likewise, an efficient lipid-induced substrate switch in cultured myocytes depended on adenovirus-mediated increases in PGC1α expression. Our results supported a novel paradigm in which a high lipid supply, occurring under conditions of low PGC1α, provokes a disconnect between mitochondrial β-oxidation and tricarboxylic acid cycle activity. Conversely, the metabolic remodeling that occurred in response to PGC1α overexpression favored a shift from incomplete to complete β-oxidation. We proposed that PGC1α enables muscle mitochondria to better cope with a high lipid load, possibly reflecting a fundamental metabolic benefit of exercise training.

Original languageEnglish
Pages (from-to)33588-33598
Number of pages11
JournalJournal of Biological Chemistry
Volume280
Issue number39
DOIs
Publication statusPublished - 2005 Sep 30

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'Peroxisome proliferator-activated receptor-γ co-activator 1α-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency'. Together they form a unique fingerprint.

  • Cite this