Phase diagram of bipartite entanglement

Paolo Facchi, Giorgio Parisi, Saverio Pascazio, Antonello Scardicchio, Kazuya Yuasa

Research output: Contribution to journalArticle

Abstract

We investigate the features of the entanglement spectrum (distribution of the eigenvalues of the reduced density matrix) of a large quantum system in a pure state. We consider all Rényi entropies and recover purity and von Neumann entropy as particular cases. We construct the phase diagram of the theory and unveil the presence of two critical lines.

Original languageEnglish
Article number414002
JournalJournal of Physics A: Mathematical and Theoretical
Volume52
Issue number41
DOIs
Publication statusPublished - 2019 Sep 18

Fingerprint

Entanglement
Phase Diagram
Phase diagrams
Entropy
phase diagrams
entropy
Pure State
Density Matrix
Quantum Systems
purity
eigenvalues
Eigenvalue
Line

Keywords

  • entanglement
  • phase transitions
  • random matrix theory

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Modelling and Simulation
  • Mathematical Physics
  • Physics and Astronomy(all)

Cite this

Phase diagram of bipartite entanglement. / Facchi, Paolo; Parisi, Giorgio; Pascazio, Saverio; Scardicchio, Antonello; Yuasa, Kazuya.

In: Journal of Physics A: Mathematical and Theoretical, Vol. 52, No. 41, 414002, 18.09.2019.

Research output: Contribution to journalArticle

Facchi, Paolo ; Parisi, Giorgio ; Pascazio, Saverio ; Scardicchio, Antonello ; Yuasa, Kazuya. / Phase diagram of bipartite entanglement. In: Journal of Physics A: Mathematical and Theoretical. 2019 ; Vol. 52, No. 41.
@article{70f98b33c917462c940e2c8a6b6cb18d,
title = "Phase diagram of bipartite entanglement",
abstract = "We investigate the features of the entanglement spectrum (distribution of the eigenvalues of the reduced density matrix) of a large quantum system in a pure state. We consider all R{\'e}nyi entropies and recover purity and von Neumann entropy as particular cases. We construct the phase diagram of the theory and unveil the presence of two critical lines.",
keywords = "entanglement, phase transitions, random matrix theory",
author = "Paolo Facchi and Giorgio Parisi and Saverio Pascazio and Antonello Scardicchio and Kazuya Yuasa",
year = "2019",
month = "9",
day = "18",
doi = "10.1088/1751-8121/ab3f4e",
language = "English",
volume = "52",
journal = "Journal of Physics A: Mathematical and Theoretical",
issn = "1751-8113",
publisher = "IOP Publishing Ltd.",
number = "41",

}

TY - JOUR

T1 - Phase diagram of bipartite entanglement

AU - Facchi, Paolo

AU - Parisi, Giorgio

AU - Pascazio, Saverio

AU - Scardicchio, Antonello

AU - Yuasa, Kazuya

PY - 2019/9/18

Y1 - 2019/9/18

N2 - We investigate the features of the entanglement spectrum (distribution of the eigenvalues of the reduced density matrix) of a large quantum system in a pure state. We consider all Rényi entropies and recover purity and von Neumann entropy as particular cases. We construct the phase diagram of the theory and unveil the presence of two critical lines.

AB - We investigate the features of the entanglement spectrum (distribution of the eigenvalues of the reduced density matrix) of a large quantum system in a pure state. We consider all Rényi entropies and recover purity and von Neumann entropy as particular cases. We construct the phase diagram of the theory and unveil the presence of two critical lines.

KW - entanglement

KW - phase transitions

KW - random matrix theory

UR - http://www.scopus.com/inward/record.url?scp=85073110750&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85073110750&partnerID=8YFLogxK

U2 - 10.1088/1751-8121/ab3f4e

DO - 10.1088/1751-8121/ab3f4e

M3 - Article

AN - SCOPUS:85073110750

VL - 52

JO - Journal of Physics A: Mathematical and Theoretical

JF - Journal of Physics A: Mathematical and Theoretical

SN - 1751-8113

IS - 41

M1 - 414002

ER -