TY - JOUR
T1 - Photo-switchable control of pH-responsive actuators via pH jump reaction
AU - Techawanitchai, Prapatsorn
AU - Ebara, Mitsuhiro
AU - Idota, Naokazu
AU - Asoh, Taka Aki
AU - Kikuchi, Akihiko
AU - Aoyagi, Takao
PY - 2012/3/14
Y1 - 2012/3/14
N2 - We propose a new approach to fabricate reversible self-bending actuators utilizing a photo-triggered pH jump reaction. A photo-initiated proton-releasing agent of o-nitrobenzaldehyde (NBA) was successfully integrated into bilayer hydrogels composed of a polyacid layer, poly(N-isopropylacrylamide-co-2- carboxyisopropylacrylamide) (P(NIPAAm-co-CIPAAm)) and a polybase layer, poly(N-isopropylacrylamide-co-N,N′-dimethylaminopropylacylamide) (P(NIPAAm-co-DMAPAAm)), where the adhesion of both layers was achieved via electrophoresis of semi-interpenetrating polyelectrolyte chains. The NBA-integrated bilayer gels demonstrated quick proton release upon UV irradiation, allowing the pH within the gel to decrease below the volume phase transition pH in 30 seconds. By controlling the NBA concentration and the gel thickness, the degrees and the kinetics of bending were easily controlled. Reversible bending was also studied with respect to the NBA concentration in response to 'on-off' UV irradiation. Additionally, self-bending of the non-UV irradiated region of the gel was also achieved because the generated protons gradually diffused toward the non-irradiated region. The proposed system can be potentially applied in the fields of mechanical actuators, controlled encapsulation and drug release, robotics and microfluidic technologies because control over autonomous motion by both physical and chemical signals is essential as a programmable system for real biomedical and nano-technological applications.
AB - We propose a new approach to fabricate reversible self-bending actuators utilizing a photo-triggered pH jump reaction. A photo-initiated proton-releasing agent of o-nitrobenzaldehyde (NBA) was successfully integrated into bilayer hydrogels composed of a polyacid layer, poly(N-isopropylacrylamide-co-2- carboxyisopropylacrylamide) (P(NIPAAm-co-CIPAAm)) and a polybase layer, poly(N-isopropylacrylamide-co-N,N′-dimethylaminopropylacylamide) (P(NIPAAm-co-DMAPAAm)), where the adhesion of both layers was achieved via electrophoresis of semi-interpenetrating polyelectrolyte chains. The NBA-integrated bilayer gels demonstrated quick proton release upon UV irradiation, allowing the pH within the gel to decrease below the volume phase transition pH in 30 seconds. By controlling the NBA concentration and the gel thickness, the degrees and the kinetics of bending were easily controlled. Reversible bending was also studied with respect to the NBA concentration in response to 'on-off' UV irradiation. Additionally, self-bending of the non-UV irradiated region of the gel was also achieved because the generated protons gradually diffused toward the non-irradiated region. The proposed system can be potentially applied in the fields of mechanical actuators, controlled encapsulation and drug release, robotics and microfluidic technologies because control over autonomous motion by both physical and chemical signals is essential as a programmable system for real biomedical and nano-technological applications.
UR - http://www.scopus.com/inward/record.url?scp=84857743169&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84857743169&partnerID=8YFLogxK
U2 - 10.1039/c2sm07277g
DO - 10.1039/c2sm07277g
M3 - Article
AN - SCOPUS:84857743169
SN - 1744-683X
VL - 8
SP - 2844
EP - 2851
JO - Soft Matter
JF - Soft Matter
IS - 10
ER -