Photoluminescence Mechanism in Heavily Si-Doped GaAsN

Takashi Tsukasaki*, Ren Hiyoshi, Miki Fujita, Toshiki Makimoto

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


The photoluminescence (PL) mechanism is discussed for heavily Si-doped GaAsN, and the evaluation method of electron effective mass (me*) is proposed using its PL peak energy. PL peak energy monotonically decreases as increasing temperature, so the S-shape characteristic is vanished for this heavily Si-doped GaAsN as opposed to moderately Si-doped GaAsN. This result shows that the dominant PL process is an optical transition from the Fermi energy to the top of valence band independent of temperature for this heavily Si-doped GaAsN, as with degenerate n-type GaAs. Because PL peak energy is expressed by the sum of bandgap energy, the increased energy of the Burstein–Moss effect, and the decreased energy of the bandgap narrowing, me* is calculated to be 0.098 m0 for this heavily Si-doped GaAsN with nitrogen composition of 0.6%, where m0 is the electron mass. This result agrees well with previous studies, meaning that the method for estimation of me is effective for dilute GaAsN.

Original languageEnglish
Article number2000143
JournalCrystal Research and Technology
Issue number3
Publication statusPublished - 2021 Mar


  • GaAsN
  • S-shape characteristic
  • Si doped GaAsN
  • electron effective mass
  • photoluminescence

ASJC Scopus subject areas

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics


Dive into the research topics of 'Photoluminescence Mechanism in Heavily Si-Doped GaAsN'. Together they form a unique fingerprint.

Cite this