Physical and chemical descriptors for predicting interfacial thermal resistance

Yen Ju Wu, Tianzhuo Zhan, Zhufeng Hou, Lei Fang, Yibin Xu

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Heat transfer at interfaces plays a critical role in material design and device performance. Higher interfacial thermal resistances (ITRs) affect the device efficiency and increase the energy consumption. Conversely, higher ITRs can enhance the figure of merit of thermoelectric materials by achieving ultra-low thermal conductivity via nanostructuring. This study proposes a dataset of descriptors for predicting the ITRs. The dataset includes two parts: one part consists of ITRs data collected from 87 experimental papers and the other part consists of the descriptors of 289 materials, which can construct over 80,000 pair-material systems for ITRs prediction. The former part is composed of over 1300 data points of metal/nonmetal, nonmetal/nonmetal, and metal/metal interfaces. The latter part consists of physical and chemical properties that are highly correlated to the ITRs. The synthesis method of the materials and the thermal measurement technique are also recorded in the dataset for further analyses. These datasets can be applied not only to ITRs predictions but also to thermal-property predictions or heat transfer on various material systems.

Original languageEnglish
Article number36
JournalScientific Data
Volume7
Issue number1
DOIs
Publication statusPublished - 2020 Dec 1

ASJC Scopus subject areas

  • Statistics and Probability
  • Information Systems
  • Education
  • Computer Science Applications
  • Statistics, Probability and Uncertainty
  • Library and Information Sciences

Fingerprint Dive into the research topics of 'Physical and chemical descriptors for predicting interfacial thermal resistance'. Together they form a unique fingerprint.

Cite this