Pilot study of design method for surgical robot using workspace reproduction system.

Hiroto Seno, Kazuya Kawamura, Y. Kobayashi, Masakatsu G. Fujie

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Recent development methods for surgical robots have an inherent problem. The user-friendliness of operating robot cannot be revealed until completion of the robot. To assist the design of a surgical robot that is user-friendly in terms of surgeon's operation, we propose a system that considers the operation manner of surgeon during the design phase of the robot. This system includes the following functionality: 1) a master manipulator that measures the operation manner of the surgeon (operator), and 2) a slave simulator in which the mechanical parameters can be configured freely. The operator can use the master manipulator to operate the slave simulator. Using this system, we investigate the necessity of considering the operator's manner when developing a surgical robot. In the experiment, we used three instruments with mechanisms that differed with respect to the length between bending joints and measured the trajectory of each instrument tip position during the surgical task. The results show that there are differences in the trajectories of each mechanism. Based on the results, changes in the mechanism of the surgical robot influenced the operator's manner. Therefore, when designing the mechanism for a surgical robot, there is a need to consider how this influences the operator's manner.

Original languageEnglish
Pages (from-to)4542-4545
Number of pages4
JournalConference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference
Volume2011
Publication statusPublished - 2011
Externally publishedYes

Fingerprint

Slaves
Reproduction
Robots
Manipulators
Simulators
Trajectories
Joints
Surgeons
Robotic surgery
Experiments

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Biomedical Engineering
  • Health Informatics

Cite this

@article{90e2221bc1904bd3808713d80c3677b8,
title = "Pilot study of design method for surgical robot using workspace reproduction system.",
abstract = "Recent development methods for surgical robots have an inherent problem. The user-friendliness of operating robot cannot be revealed until completion of the robot. To assist the design of a surgical robot that is user-friendly in terms of surgeon's operation, we propose a system that considers the operation manner of surgeon during the design phase of the robot. This system includes the following functionality: 1) a master manipulator that measures the operation manner of the surgeon (operator), and 2) a slave simulator in which the mechanical parameters can be configured freely. The operator can use the master manipulator to operate the slave simulator. Using this system, we investigate the necessity of considering the operator's manner when developing a surgical robot. In the experiment, we used three instruments with mechanisms that differed with respect to the length between bending joints and measured the trajectory of each instrument tip position during the surgical task. The results show that there are differences in the trajectories of each mechanism. Based on the results, changes in the mechanism of the surgical robot influenced the operator's manner. Therefore, when designing the mechanism for a surgical robot, there is a need to consider how this influences the operator's manner.",
author = "Hiroto Seno and Kazuya Kawamura and Y. Kobayashi and Fujie, {Masakatsu G.}",
year = "2011",
language = "English",
volume = "2011",
pages = "4542--4545",
journal = "Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference",
issn = "1557-170X",
publisher = "Institute of Electrical and Electronics Engineers Inc.",

}

TY - JOUR

T1 - Pilot study of design method for surgical robot using workspace reproduction system.

AU - Seno, Hiroto

AU - Kawamura, Kazuya

AU - Kobayashi, Y.

AU - Fujie, Masakatsu G.

PY - 2011

Y1 - 2011

N2 - Recent development methods for surgical robots have an inherent problem. The user-friendliness of operating robot cannot be revealed until completion of the robot. To assist the design of a surgical robot that is user-friendly in terms of surgeon's operation, we propose a system that considers the operation manner of surgeon during the design phase of the robot. This system includes the following functionality: 1) a master manipulator that measures the operation manner of the surgeon (operator), and 2) a slave simulator in which the mechanical parameters can be configured freely. The operator can use the master manipulator to operate the slave simulator. Using this system, we investigate the necessity of considering the operator's manner when developing a surgical robot. In the experiment, we used three instruments with mechanisms that differed with respect to the length between bending joints and measured the trajectory of each instrument tip position during the surgical task. The results show that there are differences in the trajectories of each mechanism. Based on the results, changes in the mechanism of the surgical robot influenced the operator's manner. Therefore, when designing the mechanism for a surgical robot, there is a need to consider how this influences the operator's manner.

AB - Recent development methods for surgical robots have an inherent problem. The user-friendliness of operating robot cannot be revealed until completion of the robot. To assist the design of a surgical robot that is user-friendly in terms of surgeon's operation, we propose a system that considers the operation manner of surgeon during the design phase of the robot. This system includes the following functionality: 1) a master manipulator that measures the operation manner of the surgeon (operator), and 2) a slave simulator in which the mechanical parameters can be configured freely. The operator can use the master manipulator to operate the slave simulator. Using this system, we investigate the necessity of considering the operator's manner when developing a surgical robot. In the experiment, we used three instruments with mechanisms that differed with respect to the length between bending joints and measured the trajectory of each instrument tip position during the surgical task. The results show that there are differences in the trajectories of each mechanism. Based on the results, changes in the mechanism of the surgical robot influenced the operator's manner. Therefore, when designing the mechanism for a surgical robot, there is a need to consider how this influences the operator's manner.

UR - http://www.scopus.com/inward/record.url?scp=84863574718&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84863574718&partnerID=8YFLogxK

M3 - Article

C2 - 22255348

AN - SCOPUS:84863574718

VL - 2011

SP - 4542

EP - 4545

JO - Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference

JF - Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference

SN - 1557-170X

ER -