Polycyclic quasiconformal mapping class subgroups

    Research output: Contribution to journalArticle

    Abstract

    For a subgroup of the quasiconformal mapping class group of a Riemann surface in general, we give an algebraic condition which guarantees its discreteness in the compact-open topology. Then we apply this result to its action on the Teichmüller space.

    Original languageEnglish
    Pages (from-to)361-374
    Number of pages14
    JournalPacific Journal of Mathematics
    Volume251
    Issue number2
    DOIs
    Publication statusPublished - 2011

    Fingerprint

    Compact-open Topology
    Quasiconformal Mapping
    Mapping Class Group
    Riemann Surface
    Subgroup
    Class

    Keywords

    • Discrete
    • Polycyclic
    • Quasiconformal mapping class group
    • Teichmüller space

    ASJC Scopus subject areas

    • Mathematics(all)

    Cite this

    Polycyclic quasiconformal mapping class subgroups. / Matsuzaki, Katsuhiko.

    In: Pacific Journal of Mathematics, Vol. 251, No. 2, 2011, p. 361-374.

    Research output: Contribution to journalArticle

    @article{6c86047a84b54ec58fc374a3255b09d5,
    title = "Polycyclic quasiconformal mapping class subgroups",
    abstract = "For a subgroup of the quasiconformal mapping class group of a Riemann surface in general, we give an algebraic condition which guarantees its discreteness in the compact-open topology. Then we apply this result to its action on the Teichm{\"u}ller space.",
    keywords = "Discrete, Polycyclic, Quasiconformal mapping class group, Teichm{\"u}ller space",
    author = "Katsuhiko Matsuzaki",
    year = "2011",
    doi = "10.2140/pjm.2011.251.361",
    language = "English",
    volume = "251",
    pages = "361--374",
    journal = "Pacific Journal of Mathematics",
    issn = "0030-8730",
    publisher = "University of California, Berkeley",
    number = "2",

    }

    TY - JOUR

    T1 - Polycyclic quasiconformal mapping class subgroups

    AU - Matsuzaki, Katsuhiko

    PY - 2011

    Y1 - 2011

    N2 - For a subgroup of the quasiconformal mapping class group of a Riemann surface in general, we give an algebraic condition which guarantees its discreteness in the compact-open topology. Then we apply this result to its action on the Teichmüller space.

    AB - For a subgroup of the quasiconformal mapping class group of a Riemann surface in general, we give an algebraic condition which guarantees its discreteness in the compact-open topology. Then we apply this result to its action on the Teichmüller space.

    KW - Discrete

    KW - Polycyclic

    KW - Quasiconformal mapping class group

    KW - Teichmüller space

    UR - http://www.scopus.com/inward/record.url?scp=79959217030&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=79959217030&partnerID=8YFLogxK

    U2 - 10.2140/pjm.2011.251.361

    DO - 10.2140/pjm.2011.251.361

    M3 - Article

    VL - 251

    SP - 361

    EP - 374

    JO - Pacific Journal of Mathematics

    JF - Pacific Journal of Mathematics

    SN - 0030-8730

    IS - 2

    ER -