Pore shape-reflecting morphosynthesis of lithium niobium oxide: Via mixed chloride flux growth in the presence of mesoporous silica

Minoru Sohmiya, Shinya Umehara, Shinpei Enomoto, Yusuke Ide, Tomohiko Okada, Yoshiyuki Sugahara, Makoto Ogawa

Research output: Contribution to journalArticle

Abstract

A new synthesis method, "chloride flux growth in the rigid nanospace of mesoporous silica", was developed to obtain lithium niobium oxide anisotropic nanoparticles. The morphologies reflect the pore size and shape of the used mesoporous silicas. This method has great potential for synthesizing size-tuned anisotropic nanoparticles of other complex metal oxides.

Original languageEnglish
Pages (from-to)1726-1730
Number of pages5
JournalNanoscale Advances
Volume1
Issue number5
DOIs
Publication statusPublished - 2019 Jan 1

Fingerprint

Niobium oxide
niobium oxides
lithium oxides
Lithium
Silicon Dioxide
Chlorides
chlorides
Silica
Fluxes
Nanoparticles
silicon dioxide
porosity
nanoparticles
Coordination Complexes
Metal complexes
Oxides
Pore size
metal oxides
synthesis

ASJC Scopus subject areas

  • Engineering(all)
  • Bioengineering
  • Atomic and Molecular Physics, and Optics
  • Materials Science(all)
  • Chemistry(all)

Cite this

Pore shape-reflecting morphosynthesis of lithium niobium oxide : Via mixed chloride flux growth in the presence of mesoporous silica. / Sohmiya, Minoru; Umehara, Shinya; Enomoto, Shinpei; Ide, Yusuke; Okada, Tomohiko; Sugahara, Yoshiyuki; Ogawa, Makoto.

In: Nanoscale Advances, Vol. 1, No. 5, 01.01.2019, p. 1726-1730.

Research output: Contribution to journalArticle

Sohmiya, Minoru ; Umehara, Shinya ; Enomoto, Shinpei ; Ide, Yusuke ; Okada, Tomohiko ; Sugahara, Yoshiyuki ; Ogawa, Makoto. / Pore shape-reflecting morphosynthesis of lithium niobium oxide : Via mixed chloride flux growth in the presence of mesoporous silica. In: Nanoscale Advances. 2019 ; Vol. 1, No. 5. pp. 1726-1730.
@article{ac03557ad9b940cf9ff502fb12d5f2b5,
title = "Pore shape-reflecting morphosynthesis of lithium niobium oxide: Via mixed chloride flux growth in the presence of mesoporous silica",
abstract = "A new synthesis method, {"}chloride flux growth in the rigid nanospace of mesoporous silica{"}, was developed to obtain lithium niobium oxide anisotropic nanoparticles. The morphologies reflect the pore size and shape of the used mesoporous silicas. This method has great potential for synthesizing size-tuned anisotropic nanoparticles of other complex metal oxides.",
author = "Minoru Sohmiya and Shinya Umehara and Shinpei Enomoto and Yusuke Ide and Tomohiko Okada and Yoshiyuki Sugahara and Makoto Ogawa",
year = "2019",
month = "1",
day = "1",
doi = "10.1039/c9na00097f",
language = "English",
volume = "1",
pages = "1726--1730",
journal = "Nanoscale Advances",
issn = "2516-0230",
number = "5",

}

TY - JOUR

T1 - Pore shape-reflecting morphosynthesis of lithium niobium oxide

T2 - Via mixed chloride flux growth in the presence of mesoporous silica

AU - Sohmiya, Minoru

AU - Umehara, Shinya

AU - Enomoto, Shinpei

AU - Ide, Yusuke

AU - Okada, Tomohiko

AU - Sugahara, Yoshiyuki

AU - Ogawa, Makoto

PY - 2019/1/1

Y1 - 2019/1/1

N2 - A new synthesis method, "chloride flux growth in the rigid nanospace of mesoporous silica", was developed to obtain lithium niobium oxide anisotropic nanoparticles. The morphologies reflect the pore size and shape of the used mesoporous silicas. This method has great potential for synthesizing size-tuned anisotropic nanoparticles of other complex metal oxides.

AB - A new synthesis method, "chloride flux growth in the rigid nanospace of mesoporous silica", was developed to obtain lithium niobium oxide anisotropic nanoparticles. The morphologies reflect the pore size and shape of the used mesoporous silicas. This method has great potential for synthesizing size-tuned anisotropic nanoparticles of other complex metal oxides.

UR - http://www.scopus.com/inward/record.url?scp=85072033002&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85072033002&partnerID=8YFLogxK

U2 - 10.1039/c9na00097f

DO - 10.1039/c9na00097f

M3 - Article

AN - SCOPUS:85072033002

VL - 1

SP - 1726

EP - 1730

JO - Nanoscale Advances

JF - Nanoscale Advances

SN - 2516-0230

IS - 5

ER -