Precision imaging of 4.4 MeV gamma rays using a 3-D position sensitive Compton camera

Ayako Koide, Jun Kataoka*, Takamitsu Masuda, Saku Mochizuki, Takanori Taya, Koki Sueoka, Leo Tagawa, Kazuya Fujieda, Takuya Maruhashi, Takuya Kurihara, Taku Inaniwa

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    28 Citations (Scopus)

    Abstract

    Imaging of nuclear gamma-ray lines in the 1-10 MeV range is far from being established in both medical and physical applications. In proton therapy, 4.4 MeV gamma rays are emitted from the excited nucleus of either 12C∗or 11B∗and are considered good indicators of dose delivery and/or range verification. Further, in gamma-ray astronomy, 4.4 MeV gamma rays are produced by cosmic ray interactions in the interstellar medium, and can thus be used to probe nucleothynthesis in the universe. In this paper, we present a high-precision image of 4.4 MeV gamma rays taken by newly developed 3-D position sensitive Compton camera (3D-PSCC). To mimic the situation in proton therapy, we first irradiated water, PMMA and Ca(OH)2 with a 70 MeV proton beam, then we identified various nuclear lines with the HPGe detector. The 4.4 MeV gamma rays constitute a broad peak, including single and double escape peaks. Thus, by setting an energy window of 3D-PSCC from 3 to 5 MeV, we show that a gamma ray image sharply concentrates near the Bragg peak, as expected from the minimum energy threshold and sharp peak profile in the cross section of 12C(p,p)12C∗.

    Original languageEnglish
    Article number8116
    JournalScientific reports
    Volume8
    Issue number1
    DOIs
    Publication statusPublished - 2018 Dec 1

    ASJC Scopus subject areas

    • General

    Fingerprint

    Dive into the research topics of 'Precision imaging of 4.4 MeV gamma rays using a 3-D position sensitive Compton camera'. Together they form a unique fingerprint.

    Cite this