Predicting network outages based on Q-drop in optical network

Yohei Hasegawa, Masato Uchida

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The sudden drop in the quality of an optical signal, called Q-drop, is an important factor for predicting network outages. Herein, we classify sudden drop events into two classes: one the results in a network outage, and one that does not result in a network outage, for the same period of time. Therefore, we build a predictor based on machine learning. The features of the predictor are given by characterizing the Q-drop event based on the optical layer characteristics immediately before the Q-drop event. The predictor is trained for each Q-drop event to adapt to the temporal change of the optical layer characteristics. Additionally, oversampling is applied to training data to avoid overlooking the network outage in the prediction. From the evaluation using real data, we showed that the proposed method is effective for the prediction of network outages in a short period. Furthermore, we found that information regarding the instability of the optical signal is important for the prediction of network outages. The result herein can contribute to improving the availability of the network because the proposed method predicts network outages based on characteristics that are invisible from the IP layer.

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE 43rd Annual Computer Software and Applications Conference, COMPSAC 2019
EditorsVladimir Getov, Jean-Luc Gaudiot, Nariyoshi Yamai, Stelvio Cimato, Morris Chang, Yuuichi Teranishi, Ji-Jiang Yang, Hong Va Leong, Hossian Shahriar, Michiharu Takemoto, Dave Towey, Hiroki Takakura, Atilla Elci, Susumu Takeuchi, Satish Puri
PublisherIEEE Computer Society
Pages258-263
Number of pages6
ISBN (Electronic)9781728126074
DOIs
Publication statusPublished - 2019 Jul
Event43rd IEEE Annual Computer Software and Applications Conference, COMPSAC 2019 - Milwaukee, United States
Duration: 2019 Jul 152019 Jul 19

Publication series

NameProceedings - International Computer Software and Applications Conference
Volume1
ISSN (Print)0730-3157

Conference

Conference43rd IEEE Annual Computer Software and Applications Conference, COMPSAC 2019
CountryUnited States
CityMilwaukee
Period19/7/1519/7/19

Fingerprint

Fiber optic networks
Outages
Learning systems
Availability

Keywords

  • Machine learning
  • Optical network
  • Outage prediciton
  • Q-drop

ASJC Scopus subject areas

  • Software
  • Computer Science Applications

Cite this

Hasegawa, Y., & Uchida, M. (2019). Predicting network outages based on Q-drop in optical network. In V. Getov, J-L. Gaudiot, N. Yamai, S. Cimato, M. Chang, Y. Teranishi, J-J. Yang, H. V. Leong, H. Shahriar, M. Takemoto, D. Towey, H. Takakura, A. Elci, S. Takeuchi, ... S. Puri (Eds.), Proceedings - 2019 IEEE 43rd Annual Computer Software and Applications Conference, COMPSAC 2019 (pp. 258-263). [8754055] (Proceedings - International Computer Software and Applications Conference; Vol. 1). IEEE Computer Society. https://doi.org/10.1109/COMPSAC.2019.00045

Predicting network outages based on Q-drop in optical network. / Hasegawa, Yohei; Uchida, Masato.

Proceedings - 2019 IEEE 43rd Annual Computer Software and Applications Conference, COMPSAC 2019. ed. / Vladimir Getov; Jean-Luc Gaudiot; Nariyoshi Yamai; Stelvio Cimato; Morris Chang; Yuuichi Teranishi; Ji-Jiang Yang; Hong Va Leong; Hossian Shahriar; Michiharu Takemoto; Dave Towey; Hiroki Takakura; Atilla Elci; Susumu Takeuchi; Satish Puri. IEEE Computer Society, 2019. p. 258-263 8754055 (Proceedings - International Computer Software and Applications Conference; Vol. 1).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Hasegawa, Y & Uchida, M 2019, Predicting network outages based on Q-drop in optical network. in V Getov, J-L Gaudiot, N Yamai, S Cimato, M Chang, Y Teranishi, J-J Yang, HV Leong, H Shahriar, M Takemoto, D Towey, H Takakura, A Elci, S Takeuchi & S Puri (eds), Proceedings - 2019 IEEE 43rd Annual Computer Software and Applications Conference, COMPSAC 2019., 8754055, Proceedings - International Computer Software and Applications Conference, vol. 1, IEEE Computer Society, pp. 258-263, 43rd IEEE Annual Computer Software and Applications Conference, COMPSAC 2019, Milwaukee, United States, 19/7/15. https://doi.org/10.1109/COMPSAC.2019.00045
Hasegawa Y, Uchida M. Predicting network outages based on Q-drop in optical network. In Getov V, Gaudiot J-L, Yamai N, Cimato S, Chang M, Teranishi Y, Yang J-J, Leong HV, Shahriar H, Takemoto M, Towey D, Takakura H, Elci A, Takeuchi S, Puri S, editors, Proceedings - 2019 IEEE 43rd Annual Computer Software and Applications Conference, COMPSAC 2019. IEEE Computer Society. 2019. p. 258-263. 8754055. (Proceedings - International Computer Software and Applications Conference). https://doi.org/10.1109/COMPSAC.2019.00045
Hasegawa, Yohei ; Uchida, Masato. / Predicting network outages based on Q-drop in optical network. Proceedings - 2019 IEEE 43rd Annual Computer Software and Applications Conference, COMPSAC 2019. editor / Vladimir Getov ; Jean-Luc Gaudiot ; Nariyoshi Yamai ; Stelvio Cimato ; Morris Chang ; Yuuichi Teranishi ; Ji-Jiang Yang ; Hong Va Leong ; Hossian Shahriar ; Michiharu Takemoto ; Dave Towey ; Hiroki Takakura ; Atilla Elci ; Susumu Takeuchi ; Satish Puri. IEEE Computer Society, 2019. pp. 258-263 (Proceedings - International Computer Software and Applications Conference).
@inproceedings{1b80515089504467937730a9b5f43ce4,
title = "Predicting network outages based on Q-drop in optical network",
abstract = "The sudden drop in the quality of an optical signal, called Q-drop, is an important factor for predicting network outages. Herein, we classify sudden drop events into two classes: one the results in a network outage, and one that does not result in a network outage, for the same period of time. Therefore, we build a predictor based on machine learning. The features of the predictor are given by characterizing the Q-drop event based on the optical layer characteristics immediately before the Q-drop event. The predictor is trained for each Q-drop event to adapt to the temporal change of the optical layer characteristics. Additionally, oversampling is applied to training data to avoid overlooking the network outage in the prediction. From the evaluation using real data, we showed that the proposed method is effective for the prediction of network outages in a short period. Furthermore, we found that information regarding the instability of the optical signal is important for the prediction of network outages. The result herein can contribute to improving the availability of the network because the proposed method predicts network outages based on characteristics that are invisible from the IP layer.",
keywords = "Machine learning, Optical network, Outage prediciton, Q-drop",
author = "Yohei Hasegawa and Masato Uchida",
year = "2019",
month = "7",
doi = "10.1109/COMPSAC.2019.00045",
language = "English",
series = "Proceedings - International Computer Software and Applications Conference",
publisher = "IEEE Computer Society",
pages = "258--263",
editor = "Vladimir Getov and Jean-Luc Gaudiot and Nariyoshi Yamai and Stelvio Cimato and Morris Chang and Yuuichi Teranishi and Ji-Jiang Yang and Leong, {Hong Va} and Hossian Shahriar and Michiharu Takemoto and Dave Towey and Hiroki Takakura and Atilla Elci and Susumu Takeuchi and Satish Puri",
booktitle = "Proceedings - 2019 IEEE 43rd Annual Computer Software and Applications Conference, COMPSAC 2019",

}

TY - GEN

T1 - Predicting network outages based on Q-drop in optical network

AU - Hasegawa, Yohei

AU - Uchida, Masato

PY - 2019/7

Y1 - 2019/7

N2 - The sudden drop in the quality of an optical signal, called Q-drop, is an important factor for predicting network outages. Herein, we classify sudden drop events into two classes: one the results in a network outage, and one that does not result in a network outage, for the same period of time. Therefore, we build a predictor based on machine learning. The features of the predictor are given by characterizing the Q-drop event based on the optical layer characteristics immediately before the Q-drop event. The predictor is trained for each Q-drop event to adapt to the temporal change of the optical layer characteristics. Additionally, oversampling is applied to training data to avoid overlooking the network outage in the prediction. From the evaluation using real data, we showed that the proposed method is effective for the prediction of network outages in a short period. Furthermore, we found that information regarding the instability of the optical signal is important for the prediction of network outages. The result herein can contribute to improving the availability of the network because the proposed method predicts network outages based on characteristics that are invisible from the IP layer.

AB - The sudden drop in the quality of an optical signal, called Q-drop, is an important factor for predicting network outages. Herein, we classify sudden drop events into two classes: one the results in a network outage, and one that does not result in a network outage, for the same period of time. Therefore, we build a predictor based on machine learning. The features of the predictor are given by characterizing the Q-drop event based on the optical layer characteristics immediately before the Q-drop event. The predictor is trained for each Q-drop event to adapt to the temporal change of the optical layer characteristics. Additionally, oversampling is applied to training data to avoid overlooking the network outage in the prediction. From the evaluation using real data, we showed that the proposed method is effective for the prediction of network outages in a short period. Furthermore, we found that information regarding the instability of the optical signal is important for the prediction of network outages. The result herein can contribute to improving the availability of the network because the proposed method predicts network outages based on characteristics that are invisible from the IP layer.

KW - Machine learning

KW - Optical network

KW - Outage prediciton

KW - Q-drop

UR - http://www.scopus.com/inward/record.url?scp=85072693089&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85072693089&partnerID=8YFLogxK

U2 - 10.1109/COMPSAC.2019.00045

DO - 10.1109/COMPSAC.2019.00045

M3 - Conference contribution

AN - SCOPUS:85072693089

T3 - Proceedings - International Computer Software and Applications Conference

SP - 258

EP - 263

BT - Proceedings - 2019 IEEE 43rd Annual Computer Software and Applications Conference, COMPSAC 2019

A2 - Getov, Vladimir

A2 - Gaudiot, Jean-Luc

A2 - Yamai, Nariyoshi

A2 - Cimato, Stelvio

A2 - Chang, Morris

A2 - Teranishi, Yuuichi

A2 - Yang, Ji-Jiang

A2 - Leong, Hong Va

A2 - Shahriar, Hossian

A2 - Takemoto, Michiharu

A2 - Towey, Dave

A2 - Takakura, Hiroki

A2 - Elci, Atilla

A2 - Takeuchi, Susumu

A2 - Puri, Satish

PB - IEEE Computer Society

ER -