Prediction of Elementary Reaction Mechanism for the CVD Process in Si2Cl6-H2 System using Semi-Empirical Molecular Orbital Method

Nagahiro Saito, Akio Fuwa

    Research output: Contribution to journalArticle

    Abstract

    From our previous experimental study of the Si chemical vapor deposition in Si2Cl6-H2 system, the following elementary reaction mechanism was proposed: decomposition of Si2Cl6 to produce SiCl2, which becomes the adsorbent; Si2Cl6(g) → 2SiCl3(g) → SiCl4(g) + SiCl2(g) (→ SiCl2(a)), and hydrogen reduction reaction of the absorbed SiCl2 to produce Si(s). The preliminary quantum chemistry study for this reaction mechanism has shown that the reaction is so infeasible that the above-mentioned elementary reaction mechanism is unreasonable. The most feasible and appropriate reaction mechanism has been shown as follows: (Step 1) Si2Cl6(g) → SiCl4,(g) + SiCl2(g) (Step 2) SiCl2(g) +a → SiCl2(a) (Step 3) SiCl2(a) + H2(g) → SiCl(a) + 2HCl(g) (Step 3-1) SiCl2(a) + H2(g) → Si-2HCl(a) (Step 3-2) Si-2HCl(a) → Si(a) + 2HCl(g) where, a is the active site on silicon surface. On the assumption that step 3 is the rate-determining step, this elementary reaction mechanism can explain the experimental observation in the rate expression on the concentration dependence with respect to Si2Cl6 and H2.

    Original languageEnglish
    Pages (from-to)319-325
    Number of pages7
    JournalNippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals
    Volume63
    Issue number3
    Publication statusPublished - 1999

    Fingerprint

    Quantum chemistry
    Molecular orbitals
    Silicon
    Adsorbents
    Hydrogen
    Chemical vapor deposition
    molecular orbitals
    vapor deposition
    Decomposition
    predictions
    quantum chemistry
    adsorbents
    decomposition
    silicon
    hydrogen

    Keywords

    • Chemical vapor deposition; CVD
    • Elementary reaction
    • Semi-empirical MO
    • SiCl

    ASJC Scopus subject areas

    • Metals and Alloys

    Cite this

    @article{47cee13d31414d41b9739ec528db0e5d,
    title = "Prediction of Elementary Reaction Mechanism for the CVD Process in Si2Cl6-H2 System using Semi-Empirical Molecular Orbital Method",
    abstract = "From our previous experimental study of the Si chemical vapor deposition in Si2Cl6-H2 system, the following elementary reaction mechanism was proposed: decomposition of Si2Cl6 to produce SiCl2, which becomes the adsorbent; Si2Cl6(g) → 2SiCl3(g) → SiCl4(g) + SiCl2(g) (→ SiCl2(a)), and hydrogen reduction reaction of the absorbed SiCl2 to produce Si(s). The preliminary quantum chemistry study for this reaction mechanism has shown that the reaction is so infeasible that the above-mentioned elementary reaction mechanism is unreasonable. The most feasible and appropriate reaction mechanism has been shown as follows: (Step 1) Si2Cl6(g) → SiCl4,(g) + SiCl2(g) (Step 2) SiCl2(g) +a → SiCl2(a) (Step 3) SiCl2(a) + H2(g) → SiCl(a) + 2HCl(g) (Step 3-1) SiCl2(a) + H2(g) → Si-2HCl(a) (Step 3-2) Si-2HCl(a) → Si(a) + 2HCl(g) where, a is the active site on silicon surface. On the assumption that step 3 is the rate-determining step, this elementary reaction mechanism can explain the experimental observation in the rate expression on the concentration dependence with respect to Si2Cl6 and H2.",
    keywords = "Chemical vapor deposition; CVD, Elementary reaction, Semi-empirical MO, SiCl",
    author = "Nagahiro Saito and Akio Fuwa",
    year = "1999",
    language = "English",
    volume = "63",
    pages = "319--325",
    journal = "Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals",
    issn = "0021-4876",
    publisher = "Japan Institute of Metals (JIM)",
    number = "3",

    }

    TY - JOUR

    T1 - Prediction of Elementary Reaction Mechanism for the CVD Process in Si2Cl6-H2 System using Semi-Empirical Molecular Orbital Method

    AU - Saito, Nagahiro

    AU - Fuwa, Akio

    PY - 1999

    Y1 - 1999

    N2 - From our previous experimental study of the Si chemical vapor deposition in Si2Cl6-H2 system, the following elementary reaction mechanism was proposed: decomposition of Si2Cl6 to produce SiCl2, which becomes the adsorbent; Si2Cl6(g) → 2SiCl3(g) → SiCl4(g) + SiCl2(g) (→ SiCl2(a)), and hydrogen reduction reaction of the absorbed SiCl2 to produce Si(s). The preliminary quantum chemistry study for this reaction mechanism has shown that the reaction is so infeasible that the above-mentioned elementary reaction mechanism is unreasonable. The most feasible and appropriate reaction mechanism has been shown as follows: (Step 1) Si2Cl6(g) → SiCl4,(g) + SiCl2(g) (Step 2) SiCl2(g) +a → SiCl2(a) (Step 3) SiCl2(a) + H2(g) → SiCl(a) + 2HCl(g) (Step 3-1) SiCl2(a) + H2(g) → Si-2HCl(a) (Step 3-2) Si-2HCl(a) → Si(a) + 2HCl(g) where, a is the active site on silicon surface. On the assumption that step 3 is the rate-determining step, this elementary reaction mechanism can explain the experimental observation in the rate expression on the concentration dependence with respect to Si2Cl6 and H2.

    AB - From our previous experimental study of the Si chemical vapor deposition in Si2Cl6-H2 system, the following elementary reaction mechanism was proposed: decomposition of Si2Cl6 to produce SiCl2, which becomes the adsorbent; Si2Cl6(g) → 2SiCl3(g) → SiCl4(g) + SiCl2(g) (→ SiCl2(a)), and hydrogen reduction reaction of the absorbed SiCl2 to produce Si(s). The preliminary quantum chemistry study for this reaction mechanism has shown that the reaction is so infeasible that the above-mentioned elementary reaction mechanism is unreasonable. The most feasible and appropriate reaction mechanism has been shown as follows: (Step 1) Si2Cl6(g) → SiCl4,(g) + SiCl2(g) (Step 2) SiCl2(g) +a → SiCl2(a) (Step 3) SiCl2(a) + H2(g) → SiCl(a) + 2HCl(g) (Step 3-1) SiCl2(a) + H2(g) → Si-2HCl(a) (Step 3-2) Si-2HCl(a) → Si(a) + 2HCl(g) where, a is the active site on silicon surface. On the assumption that step 3 is the rate-determining step, this elementary reaction mechanism can explain the experimental observation in the rate expression on the concentration dependence with respect to Si2Cl6 and H2.

    KW - Chemical vapor deposition; CVD

    KW - Elementary reaction

    KW - Semi-empirical MO

    KW - SiCl

    UR - http://www.scopus.com/inward/record.url?scp=0346968284&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=0346968284&partnerID=8YFLogxK

    M3 - Article

    AN - SCOPUS:0346968284

    VL - 63

    SP - 319

    EP - 325

    JO - Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals

    JF - Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals

    SN - 0021-4876

    IS - 3

    ER -