TY - GEN
T1 - Predictive model for scour depth of coastal structure failures due to tsunamis
AU - Jayaratne, Ravindra
AU - Abimbola, Adewale
AU - Mikami, Takahito
AU - Matsuba, Shunya
AU - Esteban, Miguel
AU - Shibayama, Tomoya
PY - 2014/1/1
Y1 - 2014/1/1
N2 - Post-tsunami field surveys carried out after the 2011 Great Eastern Japan Earthquake Tsunami revealed that scour around the landward side of concrete sea dikes and seawalls was the most dominant failure mechanism. To better understand this phenomenon, detailed scour data were collected and soil samples from the surveyed locations in Miyagi and Fukushima Prefectures of Japan were comprehensively analysed. Mathematical modeling technique was employed with various combinations of input variables considered in order to determine the effective variables needed to predict the representative scour depth at the leeward of a concrete sea dike or seawall and possible design of these coastal structures against tsunami impact. Parameters such as impact overflowing pressure, height of structure measured at the landward side, inundation height, inundation velocity, angle of landward slope, Darcy's coefficient of permeability and scour depth were found to be the effective parameters essential to generate proposed scour depth predictive model. The results indicate that the hydrodynamic parameters, soil properties and physical geometry of coastal structure play a crucial role in the scour process of such structures. In addition to that, numerical experiments were also performed in order to understand the characteristics of tsunami flow around a typical coastal dike, and to propose preliminary guidelines for structure resilience against future tsunamis.
AB - Post-tsunami field surveys carried out after the 2011 Great Eastern Japan Earthquake Tsunami revealed that scour around the landward side of concrete sea dikes and seawalls was the most dominant failure mechanism. To better understand this phenomenon, detailed scour data were collected and soil samples from the surveyed locations in Miyagi and Fukushima Prefectures of Japan were comprehensively analysed. Mathematical modeling technique was employed with various combinations of input variables considered in order to determine the effective variables needed to predict the representative scour depth at the leeward of a concrete sea dike or seawall and possible design of these coastal structures against tsunami impact. Parameters such as impact overflowing pressure, height of structure measured at the landward side, inundation height, inundation velocity, angle of landward slope, Darcy's coefficient of permeability and scour depth were found to be the effective parameters essential to generate proposed scour depth predictive model. The results indicate that the hydrodynamic parameters, soil properties and physical geometry of coastal structure play a crucial role in the scour process of such structures. In addition to that, numerical experiments were also performed in order to understand the characteristics of tsunami flow around a typical coastal dike, and to propose preliminary guidelines for structure resilience against future tsunamis.
KW - 2011 Great Eastern Japan Earthquake Tsunami
KW - Impact overflowing pressure
KW - Mathematical modeling
KW - Representative scour depth
KW - Scour depth predictive model
UR - http://www.scopus.com/inward/record.url?scp=84957688881&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84957688881&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84957688881
T3 - Proceedings of the Coastal Engineering Conference
BT - Proceedings of the 34th International Conference on Coastal Engineering, ICCE 2014
A2 - Lynett, Patrick
PB - American Society of Civil Engineers (ASCE)
T2 - 34th International Conference on Coastal Engineering, ICCE 2014
Y2 - 15 June 2014 through 20 June 2014
ER -