Predominant expression of H3K9 methyltransferases in prehypertrophic and hypertrophic chondrocytes during mouse growth plate cartilage development

Hisashi Ideno, Akemi Shimada, Kazuhiko Imaizumi, Hiroshi Kimura, Masumi Abe, Kazuhisa Nakashima, Akira Nifuji

    Research output: Contribution to journalArticle

    11 Citations (Scopus)

    Abstract

    Histone lysine methylation (HKM) is an epigenetic change that establishes cell-specific gene expression and determines cell fates. In this study, we investigated the expression patterns of histone H3 lysine 9 methyltransferases (H3K9MTases) G9a (euchromatic histone lysine N-methyltransferase 2, Ehmt2), GLP (euchromatic histone lysine N-methyltransferase 1, Ehmt1), SETDB1 (SET domain, bifurcated 1), PRDM2 (PR domain containing 2), SUV39H1 (suppressor of variegation 3-9 homolog 1), and SUV39H2, as well as the distribution of 3 types of HKM at histone H3 lysine 9: mono- (H3K9me1), di- (H3K9me2), or tri-methylation (H3K9me3), during mouse growth plate development. In the forelimb cartilage primordial at embryonic day 12.5 (E12.5), none of the H3K9MTases were detected and H3K9me1, H3K9me2, and H3K9me3 were scarcely detected. At E14.5, the H3K9MTases were expressed at low levels in proliferating chondrocytes and at high levels in prehypertrophic and hypertrophic chondrocytes. Among the H3K9 methylations, H3K9me1 and H3K9me3 were markedly noted in these chondrocytes. At E16.5, G9, GLP, SETDB1, PRDM2, SUV39H1, and SUV39H2, as well as H3K9me1, H3K9me2, and H3K9me3, were detected in prehypertrophic and hypertrophic chondrocytes in the growth plate. Western blotting and real-time quantitative polymerase chain reaction analysis revealed the distributions of G9 and GLP proteins and the expression of all the H3K9MTase mRNAs in prehypertrophic and hypertrophic chondrocytes. These data suggest that H3K9 methyltransferases are predominantly expressed in prehypertrophic and hypertrophic chondrocytes, and that they could be involved in the regulation of gene expression and progression of chondrocyte differentiation by affecting the methylation state of histone H3 lysine 9 in the mouse growth plate.

    Original languageEnglish
    Pages (from-to)84-90
    Number of pages7
    JournalGene Expression Patterns
    Volume13
    Issue number3-4
    DOIs
    Publication statusPublished - 2013

      Fingerprint

    Keywords

    • Cartilage development
    • Growth plate
    • H3K9
    • Histone modification

    ASJC Scopus subject areas

    • Genetics
    • Molecular Biology
    • Developmental Biology

    Cite this