Abstract
Preparation of nanoporous titania particles from well-defined titania-octadecylamine (titania-ODA) hybrid spherical particles with 450 nm in size, which were prepared by the method reported previously (Chem. Commun.; 2009, pp. 6851-6853 [39]; RSC Adv.; 2012, vol. 2, pp. 1343-1349 [40]), was studied. ODA was removed by solvent extraction with acidic ethanol to obtain nanoporous titania particles and subsequent calcination led to the formation of nanoporous titania particles with the nanopore size ranging from 2 to 4 nm depending on the calcination temperature. The as-synthesized titania was amorphous and was transformed into anatase (at around 300 °C) and rutile (at around 600 °C) by the heat treatment. The phase transition behavior was discussed in comparison with that of as-synthesized titania-ODA particles without ODA removal. Spherical particles of titania-ODA hybrids with 70 nm in size were also transformed into nanoporous titania particles composed of anatase crystallites by the washing and calcination at 500 °C for 1 h.
Original language | English |
---|---|
Pages (from-to) | 317-325 |
Number of pages | 9 |
Journal | Journal of Solid State Chemistry |
Volume | 199 |
DOIs | |
Publication status | Published - 2013 Mar |
Keywords
- Inorganic-organic hybrid
- Monodispersed
- Nanoporous
- Phase transition
- Spherical
- Titania
ASJC Scopus subject areas
- Condensed Matter Physics
- Inorganic Chemistry
- Physical and Theoretical Chemistry
- Ceramics and Composites
- Electronic, Optical and Magnetic Materials
- Materials Chemistry