Priority-Based Data Gathering Framework in UAV-Assisted Wireless Sensor Networks

Sotheara Say, Hikari Inata, Jiang Liu, Shigeru Shimamoto

Research output: Contribution to journalArticle

67 Citations (Scopus)

Abstract

This paper proposes a novel data acquisition framework in sensor networks using an unmanned aerial vehicle (UAV) with the goal of increasing the efficiency of the data gathering efforts. To maximize the system throughput, we introduce a priority-based frame selection scheme to suppress the number of redundant data transmissions between sensor nodes and the UAV. Toward this goal, we classify the nodes inside the UAV's coverage area into different frames according to their locations. Taking advantage of the mobility of the UAV, we assign different transmission priorities to nodes in different frames. To do that, we introduce an adjustment to the contention window value used in IEEE 802.11 MAC, thereby defining a lower contention window range to the frame with higher priority (urgent area) and a higher contention window range to the frame with lower priority (less important area). The proposed framework leads to a reduction in packet collisions and, at the same time, minimizes the packet loss originated from nodes in the rear-side of the UAV when the UAV moves in the forward direction. To optimize the networks' energy consumption, we present a novel routing protocol based on the aforementioned framework. By leveraging the proposed framework and routing algorithm, we aim to reduce the transmission distances between senders and receivers. A shorter distance leads to better channel quality and energy savings, as is verified by our simulation studies and results.

Original languageEnglish
Article number7469804
Pages (from-to)5785-5794
Number of pages10
JournalIEEE Sensors Journal
Volume16
Issue number14
DOIs
Publication statusPublished - 2016 Jul 15

Keywords

  • Energy efficiency
  • frame selection
  • medium access control
  • routing protocol
  • throughput,
  • time delay
  • transmission priority
  • unmanned aerial vehicle
  • wireless sensor networks

ASJC Scopus subject areas

  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Priority-Based Data Gathering Framework in UAV-Assisted Wireless Sensor Networks'. Together they form a unique fingerprint.

  • Cite this