Abstract
This study is aimed to investigate the effect of different structures of acrylic polymers on the properties of temperature-sensitive paint (TSP). TSP is composed of a temperature-sensitive luminophore and a polymer binder to fix the luminophore on a model substrate. Until now, the development of TSP has been focused primarily on searching for luminophores with high-temperature sensitivity and high luminescent intensity. However, recent studies revealed that polymers had a significant effect on TSP properties as well as luminophores. In this study, we systematically studied the effects of different structures of acrylic polymers on the temperature and pressure sensitivity and luminescent intensity of europium(III) thenoyltrifluoroacetonatetrihydrate (EuTTA)-based TSP. It was experimentally observed that EuTTA with acrylic polymers with longer straight side chain showed higher temperature sensitivity and lower luminescent intensity than those with shorter ones. In addition, an acrylic polymer with branched side chain presented lower sensitivity, higher pressure sensitivity, and higher luminescent intensity than that with straight side chain.
Original language | English |
---|---|
Pages (from-to) | 677-681 |
Number of pages | 5 |
Journal | Sensors and Actuators, B: Chemical |
Volume | 195 |
DOIs | |
Publication status | Published - 2014 May |
Externally published | Yes |
Keywords
- Acrylic polymer
- Glass transition temperature
- Luminescent intensity
- Temperature sensitivity
- Temperature-sensitive paint
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Instrumentation
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Metals and Alloys
- Electrical and Electronic Engineering
- Materials Chemistry