R boundedness, maximal regularity and free boundary problems for the navier stokes equations

Research output: Chapter in Book/Report/Conference proceedingChapter

2 Citations (Scopus)

Abstract

In these lecture notes, we study free boundary problems for the Navier–Stokes equations with and without surface tension. The local well-posedness, global well-posedness, and asymptotics of solutions as time goes to infinity are studied in the Lp in time and Lq in space framework. To prove the local well-posedness, we use the tool of maximal Lp–Lq regularity for the Stokes equations with nonhomogeneous free boundary conditions. Our approach to proving maximal Lp–Lq regularity is based on the ℛ-bounded solution operators of the generalized resolvent problem for the Stokes equations with non-homogeneous free boundary conditions and the Weis operator-valued Fourier multiplier. Key to proving global well-posedness for the strong solutions is the decay properties of the Stokes semigroup, which are derived by spectral analysis of the Stokes operator in the bulk space and the Laplace–Beltrami operator on the boundary. We study the following two cases: (1) a bounded domain with surface tension and (2) an exterior domain without surface tension. In studying the latter case, since for unbounded domains we can obtain only polynomial decay in suitable Lq norms in space, to guarantee the Lp-integrability of solutions in time it is necessary to have the freedom to choose an exponent with respect to the time variable, thus it is essential to choose different exponents p and q. The basic approach of this chapter is to analyze the generalized resolvent problem, prove the existence of ℛ-bounded solution operators and determine the decay properties of solutions to the non-stationary problem. In particular, R-bounded solution operator and Weis’ operator valued Fourier multiplier theorem and transference theorem for the Fourier multiplier, we derive the maximal Lp–Lq regularity for the initial boundary value problem, find periodic solutions with non-homogeneous boundary conditions, and generate analytic semigroups for systems of parabolic equations, including equations appearing in fluid mechanics. This approach is quite new and extends the Fujita–Kato method in the study of the Navier–Stokes equations.

Original languageEnglish
Title of host publicationLecture Notes in Mathematics
PublisherSpringer
Pages193-462
Number of pages270
DOIs
Publication statusPublished - 2020

Publication series

NameLecture Notes in Mathematics
Volume2254
ISSN (Print)0075-8434
ISSN (Electronic)1617-9692

ASJC Scopus subject areas

  • Algebra and Number Theory

Fingerprint Dive into the research topics of 'R boundedness, maximal regularity and free boundary problems for the navier stokes equations'. Together they form a unique fingerprint.

Cite this