Radiation damage to Kokchetav UHPM diamonds in zircon: Variations in Raman, photoluminescence, and cathodoluminescence spectra

Rentaro Shimizu, Yoshihide Ogasawara

    Research output: Contribution to journalArticle

    10 Citations (Scopus)

    Abstract

    We conducted detailed in-situ Raman, photoluminescence (PL) and cathodoluminescence (CL) studies on microdiamonds in a tourmaline-rich quartzofeldspathic rock from the Kokchetav Massif, Kazakhstan. The microdiamonds occur as inclusions in the cores of K-tourmaline and in zoned zircons with varying U contents. The results of 2D Raman mapping of zircon showed that the U-rich parts were more metamictized than the U-poor parts. All the diamonds showed a strong Raman band at approximately 1332cm-1, however, the features of the Raman bands were distinctly different depending on the host minerals. On the one hand, diamonds in tourmaline had a sharp Raman band that is similar to that of kimberlite diamonds [full width at half maximum (FWHM): 2-3cm-1]. On the other hand, diamonds in zircon had a broad and downshifted band compared to those in tourmaline. In particular, diamonds in U-rich cores of zircons (up to 0.15wt.% UO2) showed broader and more downshifted Raman bands (FWHMs and peak positions varied up to 9.3cm-1 and 1328cm-1, respectively), with additional small bands at approximately 1490cm-1 and 1630cm-1. A negative correlation was observed between the peak position and the FWHM of the principal Raman band of microdiamonds. Furthermore, the PL and CL spectra showed systematic variations. Diamonds in zircons with low to moderate U-concentrations had very strong PL and CL compared to diamonds in U-rich zircons and in tourmalines. Several characteristic peaks appeared in the PL and CL spectra, indicating the presence of irradiation and/or nitrogen-related point defects in the diamonds. PL and CL of microdiamonds in high-U zircon were weak, but still showed irradiation-related peaks. The relationship between the occurrence of microdiamonds (i.e., corresponding to the estimated total α-dose since crystallization) and the Raman, PL, and CL spectral characteristics of microdiamonds strongly suggests that radiation damage predominantly caused by α-particle emission from radioactive decay of actinides (mainly U) in zircon is a principal factor for the spectral variations. Radiation damage (metamictization) is probably a common phenomenon among microdiamonds in zircons in various diamond-bearing rocks from the Kokchetav Massif. To discuss the genesis of diamonds based on their Raman, PL, or CL spectra, it is highly recommended that microdiamonds included in actinide-bearing minerals (e.g., zircon) should be treated with the most careful attention, because post-crystallization radiation damage significantly influences the spectra.

    Original languageEnglish
    Pages (from-to)201-213
    Number of pages13
    JournalLithos
    Volume206-207
    Issue number1
    DOIs
    Publication statusPublished - 2014

    Fingerprint

    radiation damage
    Diamond
    Cathodoluminescence
    cathodoluminescence
    Radiation damage
    diamond
    Photoluminescence
    zircon
    tourmaline
    Bearings (structural)
    Full width at half maximum
    Actinoid Series Elements
    actinide
    Crystallization
    Minerals
    irradiation
    crystallization
    Rocks
    Irradiation
    radioactive decay

    Keywords

    • Crystal defect
    • Luminescence
    • Microdiamond
    • Radiation damage
    • Raman spectroscopy
    • Ultrahigh-pressure metamorphism

    ASJC Scopus subject areas

    • Geochemistry and Petrology

    Cite this

    Radiation damage to Kokchetav UHPM diamonds in zircon : Variations in Raman, photoluminescence, and cathodoluminescence spectra. / Shimizu, Rentaro; Ogasawara, Yoshihide.

    In: Lithos, Vol. 206-207, No. 1, 2014, p. 201-213.

    Research output: Contribution to journalArticle

    @article{f54a047e1d4f40d6ad503bad97c5907d,
    title = "Radiation damage to Kokchetav UHPM diamonds in zircon: Variations in Raman, photoluminescence, and cathodoluminescence spectra",
    abstract = "We conducted detailed in-situ Raman, photoluminescence (PL) and cathodoluminescence (CL) studies on microdiamonds in a tourmaline-rich quartzofeldspathic rock from the Kokchetav Massif, Kazakhstan. The microdiamonds occur as inclusions in the cores of K-tourmaline and in zoned zircons with varying U contents. The results of 2D Raman mapping of zircon showed that the U-rich parts were more metamictized than the U-poor parts. All the diamonds showed a strong Raman band at approximately 1332cm-1, however, the features of the Raman bands were distinctly different depending on the host minerals. On the one hand, diamonds in tourmaline had a sharp Raman band that is similar to that of kimberlite diamonds [full width at half maximum (FWHM): 2-3cm-1]. On the other hand, diamonds in zircon had a broad and downshifted band compared to those in tourmaline. In particular, diamonds in U-rich cores of zircons (up to 0.15wt.{\%} UO2) showed broader and more downshifted Raman bands (FWHMs and peak positions varied up to 9.3cm-1 and 1328cm-1, respectively), with additional small bands at approximately 1490cm-1 and 1630cm-1. A negative correlation was observed between the peak position and the FWHM of the principal Raman band of microdiamonds. Furthermore, the PL and CL spectra showed systematic variations. Diamonds in zircons with low to moderate U-concentrations had very strong PL and CL compared to diamonds in U-rich zircons and in tourmalines. Several characteristic peaks appeared in the PL and CL spectra, indicating the presence of irradiation and/or nitrogen-related point defects in the diamonds. PL and CL of microdiamonds in high-U zircon were weak, but still showed irradiation-related peaks. The relationship between the occurrence of microdiamonds (i.e., corresponding to the estimated total α-dose since crystallization) and the Raman, PL, and CL spectral characteristics of microdiamonds strongly suggests that radiation damage predominantly caused by α-particle emission from radioactive decay of actinides (mainly U) in zircon is a principal factor for the spectral variations. Radiation damage (metamictization) is probably a common phenomenon among microdiamonds in zircons in various diamond-bearing rocks from the Kokchetav Massif. To discuss the genesis of diamonds based on their Raman, PL, or CL spectra, it is highly recommended that microdiamonds included in actinide-bearing minerals (e.g., zircon) should be treated with the most careful attention, because post-crystallization radiation damage significantly influences the spectra.",
    keywords = "Crystal defect, Luminescence, Microdiamond, Radiation damage, Raman spectroscopy, Ultrahigh-pressure metamorphism",
    author = "Rentaro Shimizu and Yoshihide Ogasawara",
    year = "2014",
    doi = "10.1016/j.lithos.2014.07.002",
    language = "English",
    volume = "206-207",
    pages = "201--213",
    journal = "Lithos",
    issn = "0024-4937",
    publisher = "Elsevier",
    number = "1",

    }

    TY - JOUR

    T1 - Radiation damage to Kokchetav UHPM diamonds in zircon

    T2 - Variations in Raman, photoluminescence, and cathodoluminescence spectra

    AU - Shimizu, Rentaro

    AU - Ogasawara, Yoshihide

    PY - 2014

    Y1 - 2014

    N2 - We conducted detailed in-situ Raman, photoluminescence (PL) and cathodoluminescence (CL) studies on microdiamonds in a tourmaline-rich quartzofeldspathic rock from the Kokchetav Massif, Kazakhstan. The microdiamonds occur as inclusions in the cores of K-tourmaline and in zoned zircons with varying U contents. The results of 2D Raman mapping of zircon showed that the U-rich parts were more metamictized than the U-poor parts. All the diamonds showed a strong Raman band at approximately 1332cm-1, however, the features of the Raman bands were distinctly different depending on the host minerals. On the one hand, diamonds in tourmaline had a sharp Raman band that is similar to that of kimberlite diamonds [full width at half maximum (FWHM): 2-3cm-1]. On the other hand, diamonds in zircon had a broad and downshifted band compared to those in tourmaline. In particular, diamonds in U-rich cores of zircons (up to 0.15wt.% UO2) showed broader and more downshifted Raman bands (FWHMs and peak positions varied up to 9.3cm-1 and 1328cm-1, respectively), with additional small bands at approximately 1490cm-1 and 1630cm-1. A negative correlation was observed between the peak position and the FWHM of the principal Raman band of microdiamonds. Furthermore, the PL and CL spectra showed systematic variations. Diamonds in zircons with low to moderate U-concentrations had very strong PL and CL compared to diamonds in U-rich zircons and in tourmalines. Several characteristic peaks appeared in the PL and CL spectra, indicating the presence of irradiation and/or nitrogen-related point defects in the diamonds. PL and CL of microdiamonds in high-U zircon were weak, but still showed irradiation-related peaks. The relationship between the occurrence of microdiamonds (i.e., corresponding to the estimated total α-dose since crystallization) and the Raman, PL, and CL spectral characteristics of microdiamonds strongly suggests that radiation damage predominantly caused by α-particle emission from radioactive decay of actinides (mainly U) in zircon is a principal factor for the spectral variations. Radiation damage (metamictization) is probably a common phenomenon among microdiamonds in zircons in various diamond-bearing rocks from the Kokchetav Massif. To discuss the genesis of diamonds based on their Raman, PL, or CL spectra, it is highly recommended that microdiamonds included in actinide-bearing minerals (e.g., zircon) should be treated with the most careful attention, because post-crystallization radiation damage significantly influences the spectra.

    AB - We conducted detailed in-situ Raman, photoluminescence (PL) and cathodoluminescence (CL) studies on microdiamonds in a tourmaline-rich quartzofeldspathic rock from the Kokchetav Massif, Kazakhstan. The microdiamonds occur as inclusions in the cores of K-tourmaline and in zoned zircons with varying U contents. The results of 2D Raman mapping of zircon showed that the U-rich parts were more metamictized than the U-poor parts. All the diamonds showed a strong Raman band at approximately 1332cm-1, however, the features of the Raman bands were distinctly different depending on the host minerals. On the one hand, diamonds in tourmaline had a sharp Raman band that is similar to that of kimberlite diamonds [full width at half maximum (FWHM): 2-3cm-1]. On the other hand, diamonds in zircon had a broad and downshifted band compared to those in tourmaline. In particular, diamonds in U-rich cores of zircons (up to 0.15wt.% UO2) showed broader and more downshifted Raman bands (FWHMs and peak positions varied up to 9.3cm-1 and 1328cm-1, respectively), with additional small bands at approximately 1490cm-1 and 1630cm-1. A negative correlation was observed between the peak position and the FWHM of the principal Raman band of microdiamonds. Furthermore, the PL and CL spectra showed systematic variations. Diamonds in zircons with low to moderate U-concentrations had very strong PL and CL compared to diamonds in U-rich zircons and in tourmalines. Several characteristic peaks appeared in the PL and CL spectra, indicating the presence of irradiation and/or nitrogen-related point defects in the diamonds. PL and CL of microdiamonds in high-U zircon were weak, but still showed irradiation-related peaks. The relationship between the occurrence of microdiamonds (i.e., corresponding to the estimated total α-dose since crystallization) and the Raman, PL, and CL spectral characteristics of microdiamonds strongly suggests that radiation damage predominantly caused by α-particle emission from radioactive decay of actinides (mainly U) in zircon is a principal factor for the spectral variations. Radiation damage (metamictization) is probably a common phenomenon among microdiamonds in zircons in various diamond-bearing rocks from the Kokchetav Massif. To discuss the genesis of diamonds based on their Raman, PL, or CL spectra, it is highly recommended that microdiamonds included in actinide-bearing minerals (e.g., zircon) should be treated with the most careful attention, because post-crystallization radiation damage significantly influences the spectra.

    KW - Crystal defect

    KW - Luminescence

    KW - Microdiamond

    KW - Radiation damage

    KW - Raman spectroscopy

    KW - Ultrahigh-pressure metamorphism

    UR - http://www.scopus.com/inward/record.url?scp=84906511120&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84906511120&partnerID=8YFLogxK

    U2 - 10.1016/j.lithos.2014.07.002

    DO - 10.1016/j.lithos.2014.07.002

    M3 - Article

    AN - SCOPUS:84906511120

    VL - 206-207

    SP - 201

    EP - 213

    JO - Lithos

    JF - Lithos

    SN - 0024-4937

    IS - 1

    ER -