Rainbow: An operating system for software-hardware multitasking on dynamically partially reconfigurable FPGAs

Krzysztof Jozwik*, Shinya Honda, Masato Edahiro, Hiroyuki Tomiyama, Hiroaki Takada

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Dynamic Partial Reconfiguration technology coupled with an Operating System for Reconfigurable Systems (OS4RS) allows for implementation of a hardware task concept, that is, an active computing object which can contend for reconfigurable computing resources and request OS services in a way software task does in a conventional OS. In this work, we show a complete model and implementation of a lightweight OS4RS supporting preemptable and clock-scalable hardware tasks. We also propose a novel, lightweight scheduling mechanism allowing for timely and priority-based reservation of reconfigurable resources, which aims at usage of preemption only at the time it brings benefits to the performance of a system. The architecture of the scheduler and the way it schedules allocations of the hardware tasks result in shorter latency of system calls, thereby reducing the overall OS overhead. Finally, we present a novel model and implementation of a channel-based intertask communication and synchronization suitable for software-hardware multitasking with preemptable and clock-scalable hardware tasks. It allows for optimizations of the communication on per task basis and utilizes point-to-point message passing rather than shared-memory communication, whenever it is possible. Extensive overhead tests of the OS4RS services as well as application speedup tests show efficiency of our approach.

Original languageEnglish
Article number789134
JournalInternational Journal of Reconfigurable Computing
Volume2013
DOIs
Publication statusPublished - 2013
Externally publishedYes

ASJC Scopus subject areas

  • Hardware and Architecture

Fingerprint

Dive into the research topics of 'Rainbow: An operating system for software-hardware multitasking on dynamically partially reconfigurable FPGAs'. Together they form a unique fingerprint.

Cite this