Abstract
We have studied the performance of large area avalanche photodiodes (APDs) recently developed by Hamamatsu Photonics K.K, in high-resolution X-rays and γ-rays detections. We show that reach-through APD can be an excellent soft X-ray detector operating at room temperature or moderately cooled environment. We obtain the best energy resolution ever achieved with APDs, 6.4% for 5.9 keV X-rays, and obtain the energy threshold as low as 0.5 keV measured at -20°C. Thanks to its fast timing response, signal carriers in the APD device are collected within a short time interval of 1.9 ns (FWHM). This type of APDs can therefore be used as a low-energy, high-counting particle monitor onboard the forthcoming Pico-satellite Cute1.7. As a scintillation photon detector, reverse-type APDs have a good advantage of reducing the dark noise significantly. The best FWHM energy resolutions of 9.4±0.3% and 4.9±0.2% were obtained for 59.5 and 662 keV γ-rays, respectively, as measured with a CsI(Tl) crystal. Combination of APDs with various other scintillators (BGO, GSO, and YAP) also showed better results than that obtained with a photomultiplier tube (PMT). These results suggest that APD could be a promising device for replacing traditional PMT usage in some applications. In particular 2-dim APD array, which we present in this paper, will be a promising device for a wide-band X-ray and γ-ray imaging detector in future space research and nuclear medicine.
Original language | English |
---|---|
Pages (from-to) | 398-404 |
Number of pages | 7 |
Journal | Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment |
Volume | 541 |
Issue number | 1-2 |
DOIs | |
Publication status | Published - 2005 Apr 1 |
Externally published | Yes |
Event | Development and Application of semiconductor Tracking Detectors - Duration: 2004 Jun 14 → 2004 Jun 17 |
Keywords
- Avalanche photodiode
- Imaging device
- Scintillation γ-ray detector
- Soft X-ray detector
ASJC Scopus subject areas
- Nuclear and High Energy Physics
- Instrumentation