Regularity bounds for Koszul cycles

Aldo Conca, Satoshi Murai

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

We study the Castelnuovo-Mumford regularity of the module of Koszul cycles Zt(I,M) of a homogeneous ideal I in a polynomial ring S with respect to a graded module M in the homological position t ∈ N. Under mild assumptions on the base field we prove that reg Zt(I,S) is a subadditive function of t when dim S/I = 0. For Borel-fixed ideals I, J we prove that reg Zt(I,S/J) ≤ t(1 + reg I) + regS/J, a result already announced by Bruns, Conca and Römer.

Original languageEnglish
Pages (from-to)493-503
Number of pages11
JournalProceedings of the American Mathematical Society
Volume143
Issue number2
DOIs
Publication statusPublished - 2015 Jan 1
Externally publishedYes

Fingerprint

Si
Regularity
Polynomials
Cycle
Subadditive Function
Castelnuovo-Mumford Regularity
Graded Module
Polynomial ring
Module

Keywords

  • Castelnuovo-Mumford regularity
  • Koszul cycles
  • Koszul homology

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Cite this

Regularity bounds for Koszul cycles. / Conca, Aldo; Murai, Satoshi.

In: Proceedings of the American Mathematical Society, Vol. 143, No. 2, 01.01.2015, p. 493-503.

Research output: Contribution to journalArticle

@article{28a28c669174422f923d41f7b38f40e5,
title = "Regularity bounds for Koszul cycles",
abstract = "We study the Castelnuovo-Mumford regularity of the module of Koszul cycles Zt(I,M) of a homogeneous ideal I in a polynomial ring S with respect to a graded module M in the homological position t ∈ N. Under mild assumptions on the base field we prove that reg Zt(I,S) is a subadditive function of t when dim S/I = 0. For Borel-fixed ideals I, J we prove that reg Zt(I,S/J) ≤ t(1 + reg I) + regS/J, a result already announced by Bruns, Conca and R{\"o}mer.",
keywords = "Castelnuovo-Mumford regularity, Koszul cycles, Koszul homology",
author = "Aldo Conca and Satoshi Murai",
year = "2015",
month = "1",
day = "1",
doi = "10.1090/S0002-9939-2014-12292-1",
language = "English",
volume = "143",
pages = "493--503",
journal = "Proceedings of the American Mathematical Society",
issn = "0002-9939",
publisher = "American Mathematical Society",
number = "2",

}

TY - JOUR

T1 - Regularity bounds for Koszul cycles

AU - Conca, Aldo

AU - Murai, Satoshi

PY - 2015/1/1

Y1 - 2015/1/1

N2 - We study the Castelnuovo-Mumford regularity of the module of Koszul cycles Zt(I,M) of a homogeneous ideal I in a polynomial ring S with respect to a graded module M in the homological position t ∈ N. Under mild assumptions on the base field we prove that reg Zt(I,S) is a subadditive function of t when dim S/I = 0. For Borel-fixed ideals I, J we prove that reg Zt(I,S/J) ≤ t(1 + reg I) + regS/J, a result already announced by Bruns, Conca and Römer.

AB - We study the Castelnuovo-Mumford regularity of the module of Koszul cycles Zt(I,M) of a homogeneous ideal I in a polynomial ring S with respect to a graded module M in the homological position t ∈ N. Under mild assumptions on the base field we prove that reg Zt(I,S) is a subadditive function of t when dim S/I = 0. For Borel-fixed ideals I, J we prove that reg Zt(I,S/J) ≤ t(1 + reg I) + regS/J, a result already announced by Bruns, Conca and Römer.

KW - Castelnuovo-Mumford regularity

KW - Koszul cycles

KW - Koszul homology

UR - http://www.scopus.com/inward/record.url?scp=84919362769&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84919362769&partnerID=8YFLogxK

U2 - 10.1090/S0002-9939-2014-12292-1

DO - 10.1090/S0002-9939-2014-12292-1

M3 - Article

AN - SCOPUS:84919362769

VL - 143

SP - 493

EP - 503

JO - Proceedings of the American Mathematical Society

JF - Proceedings of the American Mathematical Society

SN - 0002-9939

IS - 2

ER -