TY - JOUR
T1 - Relativistic star perturbations in Horndeski theories with a gauge-ready formulation
AU - Kase, Ryotaro
AU - Tsujikawa, Shinji
N1 - Funding Information:
We thank Rampei Kimura, Kei-ichi Maeda, and Seiga Sato for useful discussions. R. K. is supported by the Grant-in-Aid for Young Scientists B of the JSPS Grant No. 20K14471. S. T. is supported by the Grant-in-Aid for Scientific Research Fund of the JSPS Grant No. 19K03854.
Publisher Copyright:
© 2022 American Physical Society.
PY - 2022/1/15
Y1 - 2022/1/15
N2 - We present a general framework for studying the relativistic star perturbations on a static and spherically symmetric background in full Horndeski theories. We take a perfect fluid into account as a form of the Schutz-Sorkin action. Our formulation is sufficiently versatile in that the second-order actions of perturbations in odd- and even-parity sectors are derived without choosing particular gauge conditions, so they can be used for any convenient gauges at hand. The odd-parity sector contains one dynamical gravitational degree of freedom coupled to a time-independent four velocity of the fluid. In the even-parity sector there are three dynamical perturbations associated with gravity, scalar field, and matter sectors, whose equations of motion are decoupled from other nondynamical perturbations. For high radial and angular momentum modes, we obtain the propagation speeds of all dynamical perturbations and show that the perfect fluid in the even-parity sector has a standard sound speed affected by neither gravity nor the scalar field. Our general stability conditions and perturbation equations of motion can be directly applied to the stabilities of neutron stars and black holes as well as the calculations of their quasinormal frequencies.
AB - We present a general framework for studying the relativistic star perturbations on a static and spherically symmetric background in full Horndeski theories. We take a perfect fluid into account as a form of the Schutz-Sorkin action. Our formulation is sufficiently versatile in that the second-order actions of perturbations in odd- and even-parity sectors are derived without choosing particular gauge conditions, so they can be used for any convenient gauges at hand. The odd-parity sector contains one dynamical gravitational degree of freedom coupled to a time-independent four velocity of the fluid. In the even-parity sector there are three dynamical perturbations associated with gravity, scalar field, and matter sectors, whose equations of motion are decoupled from other nondynamical perturbations. For high radial and angular momentum modes, we obtain the propagation speeds of all dynamical perturbations and show that the perfect fluid in the even-parity sector has a standard sound speed affected by neither gravity nor the scalar field. Our general stability conditions and perturbation equations of motion can be directly applied to the stabilities of neutron stars and black holes as well as the calculations of their quasinormal frequencies.
UR - http://www.scopus.com/inward/record.url?scp=85123919909&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85123919909&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.105.024059
DO - 10.1103/PhysRevD.105.024059
M3 - Article
AN - SCOPUS:85123919909
SN - 2470-0010
VL - 105
JO - Physical Review D
JF - Physical Review D
IS - 2
M1 - 024059
ER -