Rhythm-based adaptive localization in incomplete RFID landmark environments

Kenri Kodaka*, Tetsuya Ogata, Shigeki Sugano

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper proposes a novel hybrid-structured model for the adaptive localization of robots combining a stochastic localization model and a rhythmic action model, for avoiding vacant spaces of landmarks efficiently. In regularly arranged landmark environments, robots may not be able to detect any landmarks for a long time during a straight-like movement. Consequently, locally diverse and smooth movement patterns need to be generated to keep the position estimation stable. Conventional approaches aiming at the probabilistic optimization cannot rapidly generate the detailed movement pattern due to a huge computational cost; therefore a simple but diverse movement structure needs to be introduced as an alternative option. We solve this problem by combining a particle filter as the stochastic localization module and the dynamical action model generating a zig-zagging motion. The validation experiments, where virtual-line-tracing tasks are exhibited on a floor-installed RFID environment, show that introducing the proposed rhythm pattern can improve a minimum error boundary and a velocity performance for arbitrary tolerance errors can be improved by the rhythm amplitude adaptation fed back by the localization deviation.

Original languageEnglish
Title of host publication2012 IEEE International Conference on Robotics and Automation, ICRA 2012
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2108-2114
Number of pages7
ISBN (Print)9781467314039
DOIs
Publication statusPublished - 2012 Jan 1
Event 2012 IEEE International Conference on Robotics and Automation, ICRA 2012 - Saint Paul, MN, United States
Duration: 2012 May 142012 May 18

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference 2012 IEEE International Conference on Robotics and Automation, ICRA 2012
Country/TerritoryUnited States
CitySaint Paul, MN
Period12/5/1412/5/18

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Rhythm-based adaptive localization in incomplete RFID landmark environments'. Together they form a unique fingerprint.

Cite this