Risk analysis of unruptured aneurysms using computational fluid dynamics technology

Preliminary results

Y. Qian, H. Takao, Mitsuo Umezu, Yuichi Murayama

Research output: Contribution to journalArticle

79 Citations (Scopus)

Abstract

BACKGROUND AND PURPOSE: The decision as to the treatment of incidental IAs is complex. There are no certain quantitative methods that can be used to evaluate the risk of rupture in IAs. In recent years, CFD technology has been recognized as a potential risk-analysis tool. The aim of this article was to propose a hemodynamic parameter, EL, to determine the effects of stable unruptured aneurysms and of those that ruptured during the subsequent observation period. MATERIALS AND METHODS: Four incidentally found ICA-PcomA aneurysms ruptured during the period of observation (ruptured-IAs). Another 26 unruptured aneurysms (stable-IAs) with similar location, size, and morphology were compared for the differences in hemodynamic factors, such as EL and WSS. RESULTS: The EL calculated at the ruptured-IAs was nearly 5 times higher on average than that at the stable-IAs (ruptured, 0.00374 ± 0.0011; stable, 0.000745 ± 0.0001 mW/mm 3, P < .001). However, there was no difference between the ruptured and stable groups according to the results of time-averaged WSS (P = .8) for ruptured- and stable-IAs. According to flow visualization, though the mean average inflow speed of ruptured-IAs was 2 times higher than that of the stable-IAs, the flow inside ruptured-IAs appeared to undergo longer resident tracks, with stronger impact on the aneurysm wall. On the contrary, the flow inside stable-IAs passed smoothly through the aneurysms. CONCLUSIONS: These preliminary results indicated that EL may be a useful parameter for the quantitative estimation of the risks of rupture for IAs.

Original languageEnglish
Pages (from-to)1948-1955
Number of pages8
JournalAmerican Journal of Neuroradiology
Volume32
Issue number10
DOIs
Publication statusPublished - 2011 Nov
Externally publishedYes

Fingerprint

Hydrodynamics
Aneurysm
Ruptured Aneurysm
Technology
Rupture
Hemodynamics
Observation

ASJC Scopus subject areas

  • Clinical Neurology
  • Radiology Nuclear Medicine and imaging

Cite this

Risk analysis of unruptured aneurysms using computational fluid dynamics technology : Preliminary results. / Qian, Y.; Takao, H.; Umezu, Mitsuo; Murayama, Yuichi.

In: American Journal of Neuroradiology, Vol. 32, No. 10, 11.2011, p. 1948-1955.

Research output: Contribution to journalArticle

@article{15ad8f0f6768459180e647e748be2e9a,
title = "Risk analysis of unruptured aneurysms using computational fluid dynamics technology: Preliminary results",
abstract = "BACKGROUND AND PURPOSE: The decision as to the treatment of incidental IAs is complex. There are no certain quantitative methods that can be used to evaluate the risk of rupture in IAs. In recent years, CFD technology has been recognized as a potential risk-analysis tool. The aim of this article was to propose a hemodynamic parameter, EL, to determine the effects of stable unruptured aneurysms and of those that ruptured during the subsequent observation period. MATERIALS AND METHODS: Four incidentally found ICA-PcomA aneurysms ruptured during the period of observation (ruptured-IAs). Another 26 unruptured aneurysms (stable-IAs) with similar location, size, and morphology were compared for the differences in hemodynamic factors, such as EL and WSS. RESULTS: The EL calculated at the ruptured-IAs was nearly 5 times higher on average than that at the stable-IAs (ruptured, 0.00374 ± 0.0011; stable, 0.000745 ± 0.0001 mW/mm 3, P < .001). However, there was no difference between the ruptured and stable groups according to the results of time-averaged WSS (P = .8) for ruptured- and stable-IAs. According to flow visualization, though the mean average inflow speed of ruptured-IAs was 2 times higher than that of the stable-IAs, the flow inside ruptured-IAs appeared to undergo longer resident tracks, with stronger impact on the aneurysm wall. On the contrary, the flow inside stable-IAs passed smoothly through the aneurysms. CONCLUSIONS: These preliminary results indicated that EL may be a useful parameter for the quantitative estimation of the risks of rupture for IAs.",
author = "Y. Qian and H. Takao and Mitsuo Umezu and Yuichi Murayama",
year = "2011",
month = "11",
doi = "10.3174/ajnr.A2655",
language = "English",
volume = "32",
pages = "1948--1955",
journal = "American Journal of Neuroradiology",
issn = "0195-6108",
publisher = "American Society of Neuroradiology",
number = "10",

}

TY - JOUR

T1 - Risk analysis of unruptured aneurysms using computational fluid dynamics technology

T2 - Preliminary results

AU - Qian, Y.

AU - Takao, H.

AU - Umezu, Mitsuo

AU - Murayama, Yuichi

PY - 2011/11

Y1 - 2011/11

N2 - BACKGROUND AND PURPOSE: The decision as to the treatment of incidental IAs is complex. There are no certain quantitative methods that can be used to evaluate the risk of rupture in IAs. In recent years, CFD technology has been recognized as a potential risk-analysis tool. The aim of this article was to propose a hemodynamic parameter, EL, to determine the effects of stable unruptured aneurysms and of those that ruptured during the subsequent observation period. MATERIALS AND METHODS: Four incidentally found ICA-PcomA aneurysms ruptured during the period of observation (ruptured-IAs). Another 26 unruptured aneurysms (stable-IAs) with similar location, size, and morphology were compared for the differences in hemodynamic factors, such as EL and WSS. RESULTS: The EL calculated at the ruptured-IAs was nearly 5 times higher on average than that at the stable-IAs (ruptured, 0.00374 ± 0.0011; stable, 0.000745 ± 0.0001 mW/mm 3, P < .001). However, there was no difference between the ruptured and stable groups according to the results of time-averaged WSS (P = .8) for ruptured- and stable-IAs. According to flow visualization, though the mean average inflow speed of ruptured-IAs was 2 times higher than that of the stable-IAs, the flow inside ruptured-IAs appeared to undergo longer resident tracks, with stronger impact on the aneurysm wall. On the contrary, the flow inside stable-IAs passed smoothly through the aneurysms. CONCLUSIONS: These preliminary results indicated that EL may be a useful parameter for the quantitative estimation of the risks of rupture for IAs.

AB - BACKGROUND AND PURPOSE: The decision as to the treatment of incidental IAs is complex. There are no certain quantitative methods that can be used to evaluate the risk of rupture in IAs. In recent years, CFD technology has been recognized as a potential risk-analysis tool. The aim of this article was to propose a hemodynamic parameter, EL, to determine the effects of stable unruptured aneurysms and of those that ruptured during the subsequent observation period. MATERIALS AND METHODS: Four incidentally found ICA-PcomA aneurysms ruptured during the period of observation (ruptured-IAs). Another 26 unruptured aneurysms (stable-IAs) with similar location, size, and morphology were compared for the differences in hemodynamic factors, such as EL and WSS. RESULTS: The EL calculated at the ruptured-IAs was nearly 5 times higher on average than that at the stable-IAs (ruptured, 0.00374 ± 0.0011; stable, 0.000745 ± 0.0001 mW/mm 3, P < .001). However, there was no difference between the ruptured and stable groups according to the results of time-averaged WSS (P = .8) for ruptured- and stable-IAs. According to flow visualization, though the mean average inflow speed of ruptured-IAs was 2 times higher than that of the stable-IAs, the flow inside ruptured-IAs appeared to undergo longer resident tracks, with stronger impact on the aneurysm wall. On the contrary, the flow inside stable-IAs passed smoothly through the aneurysms. CONCLUSIONS: These preliminary results indicated that EL may be a useful parameter for the quantitative estimation of the risks of rupture for IAs.

UR - http://www.scopus.com/inward/record.url?scp=81555218677&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=81555218677&partnerID=8YFLogxK

U2 - 10.3174/ajnr.A2655

DO - 10.3174/ajnr.A2655

M3 - Article

VL - 32

SP - 1948

EP - 1955

JO - American Journal of Neuroradiology

JF - American Journal of Neuroradiology

SN - 0195-6108

IS - 10

ER -