Rotational state distribution of N2+ produced from N2 or N2O observed by a laser-synchrotron radiation combination technique

Hiromichi Niikura, Masakazu Mizutani, Koichiro Mitsuke

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)


Pump-probe spectroscopy combined with laser and synchrotron radiation is performed to study the ionization and dissociation dynamics of N2 and N2O in the extreme ultraviolet energy region. The N2+(X 2Σ+g, v, N) ion produced from N2 or N2O by synchrotron radiation excitation is detected by laser-induced fluorescence (LIF) spectroscopy. To increase the number density of ions produced by synchrotron radiation photoexcitation, a cylindrical ion trap cell is employed. The effect of thermalization on the internal state distributions of N2+ ion can be ignored in the ion trap. The rotational structure of the electronic excitation B 2Σ+u, v′=0, N′ ← X 2Σ+g, v″=0, N″ of N2+ produced from N2 is clearly resolved by using a narrow-bandwidth Ti:sapphire laser. The yield curves for N2+(X 2Σ+g, v=0, 1) are also measured as a function of the photon energy of the synchrotron radiation. The rotational temperature of N2+(X 2Σ+g, v=0) produced from N2O+(B 2Π) is determined from a LIF spectrum to be in the range 200-230 K. The analysis based on the impulsive model indicates that the equilibrium bond angle of the vibrational ground state of N2O+(B 2Π) is >160°.

Original languageEnglish
Pages (from-to)45-52
Number of pages8
JournalChemical Physics Letters
Issue number1-2
Publication statusPublished - 2000 Jan 28
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry


Dive into the research topics of 'Rotational state distribution of N<sub>2</sub><sup>+</sup> produced from N<sub>2</sub> or N<sub>2</sub>O observed by a laser-synchrotron radiation combination technique'. Together they form a unique fingerprint.

Cite this