RTRACS

A modularized RNA-dependent RNA transcription system with high programmability

Shotaro Ayukawa, Masahiro Takinoue, Daisuke Kiga

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

Creating artificial biological systems is an important research endeavor. Each success contributes to synthetic biology and adds to our understanding of the functioning of the biomachinery of life. In the construction of large, complex systems, a modular approach simplifies the design process: a multilayered system can be prepared by integrating simple modules. With the concept of modularity, a variety of synthetic biological systems have been constructed, both in vivo and in vitro. But to properly develop systems with desired functions that integrate multiple modules, researchers need accurate mathematical models. In this Account, we review the development of a modularized artificial biological system known as RTRACS (reverse transcription and transcription-based autonomous computing system). In addition to modularity, model-guided predictability is an important feature of RTRACS.RTRACS has been developed as an in vitro artificial biological system through the assembly of RNA, DNA, and enzymes. A fundamental module of RTRACS receives an input RNA with a specific sequence and returns an output RNA with another specific sequence programmed in the main body, which is composed of DNA and enzymes. The conversion of the input RNA to the output RNA is achieved through a series of programmed reactions performed by the components assembled in the module. Through the substitution of a subset of components, a module that performs the AND operation was constructed. Other logical operations could be constructed with RTRACS modules. An integration of RTRACS modules has allowed the theoretical design of more complex functions, such as oscillation. The operations of these RTRACS modules were readily predicted with a numerical simulation based on a mathematical model using realistic parameters.RTRACS has the potential to model highly complex systems that function like a living cell. RTRACS was designed to be integrated with other molecules or molecular devices, for example, aptazymes, cell-free expression systems, and liposomes. For the integration of these new modules, the quantitative controls of each module based on the numerical simulation will be instructive. The capabilities of RTRACS promise to provide models of complex biomolecular systems that are able to detect the environment, assess the situation, and react to overcome the situation. Such a smart biomolecular system could be useful in many applications, such as drug delivery systems.

Original languageEnglish
Pages (from-to)1369-1379
Number of pages11
JournalAccounts of Chemical Research
Volume44
Issue number12
DOIs
Publication statusPublished - 2011 Dec 20
Externally publishedYes

Fingerprint

Transcription
Biological systems
RNA
Large scale systems
Mathematical models
DNA
Computer simulation
Enzymes
Liposomes
Substitution reactions
Cells
Molecules

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

RTRACS : A modularized RNA-dependent RNA transcription system with high programmability. / Ayukawa, Shotaro; Takinoue, Masahiro; Kiga, Daisuke.

In: Accounts of Chemical Research, Vol. 44, No. 12, 20.12.2011, p. 1369-1379.

Research output: Contribution to journalArticle

@article{7234935c2fdf47b3a01d8a30bbbdc46d,
title = "RTRACS: A modularized RNA-dependent RNA transcription system with high programmability",
abstract = "Creating artificial biological systems is an important research endeavor. Each success contributes to synthetic biology and adds to our understanding of the functioning of the biomachinery of life. In the construction of large, complex systems, a modular approach simplifies the design process: a multilayered system can be prepared by integrating simple modules. With the concept of modularity, a variety of synthetic biological systems have been constructed, both in vivo and in vitro. But to properly develop systems with desired functions that integrate multiple modules, researchers need accurate mathematical models. In this Account, we review the development of a modularized artificial biological system known as RTRACS (reverse transcription and transcription-based autonomous computing system). In addition to modularity, model-guided predictability is an important feature of RTRACS.RTRACS has been developed as an in vitro artificial biological system through the assembly of RNA, DNA, and enzymes. A fundamental module of RTRACS receives an input RNA with a specific sequence and returns an output RNA with another specific sequence programmed in the main body, which is composed of DNA and enzymes. The conversion of the input RNA to the output RNA is achieved through a series of programmed reactions performed by the components assembled in the module. Through the substitution of a subset of components, a module that performs the AND operation was constructed. Other logical operations could be constructed with RTRACS modules. An integration of RTRACS modules has allowed the theoretical design of more complex functions, such as oscillation. The operations of these RTRACS modules were readily predicted with a numerical simulation based on a mathematical model using realistic parameters.RTRACS has the potential to model highly complex systems that function like a living cell. RTRACS was designed to be integrated with other molecules or molecular devices, for example, aptazymes, cell-free expression systems, and liposomes. For the integration of these new modules, the quantitative controls of each module based on the numerical simulation will be instructive. The capabilities of RTRACS promise to provide models of complex biomolecular systems that are able to detect the environment, assess the situation, and react to overcome the situation. Such a smart biomolecular system could be useful in many applications, such as drug delivery systems.",
author = "Shotaro Ayukawa and Masahiro Takinoue and Daisuke Kiga",
year = "2011",
month = "12",
day = "20",
doi = "10.1021/ar200128b",
language = "English",
volume = "44",
pages = "1369--1379",
journal = "Accounts of Chemical Research",
issn = "0001-4842",
publisher = "American Chemical Society",
number = "12",

}

TY - JOUR

T1 - RTRACS

T2 - A modularized RNA-dependent RNA transcription system with high programmability

AU - Ayukawa, Shotaro

AU - Takinoue, Masahiro

AU - Kiga, Daisuke

PY - 2011/12/20

Y1 - 2011/12/20

N2 - Creating artificial biological systems is an important research endeavor. Each success contributes to synthetic biology and adds to our understanding of the functioning of the biomachinery of life. In the construction of large, complex systems, a modular approach simplifies the design process: a multilayered system can be prepared by integrating simple modules. With the concept of modularity, a variety of synthetic biological systems have been constructed, both in vivo and in vitro. But to properly develop systems with desired functions that integrate multiple modules, researchers need accurate mathematical models. In this Account, we review the development of a modularized artificial biological system known as RTRACS (reverse transcription and transcription-based autonomous computing system). In addition to modularity, model-guided predictability is an important feature of RTRACS.RTRACS has been developed as an in vitro artificial biological system through the assembly of RNA, DNA, and enzymes. A fundamental module of RTRACS receives an input RNA with a specific sequence and returns an output RNA with another specific sequence programmed in the main body, which is composed of DNA and enzymes. The conversion of the input RNA to the output RNA is achieved through a series of programmed reactions performed by the components assembled in the module. Through the substitution of a subset of components, a module that performs the AND operation was constructed. Other logical operations could be constructed with RTRACS modules. An integration of RTRACS modules has allowed the theoretical design of more complex functions, such as oscillation. The operations of these RTRACS modules were readily predicted with a numerical simulation based on a mathematical model using realistic parameters.RTRACS has the potential to model highly complex systems that function like a living cell. RTRACS was designed to be integrated with other molecules or molecular devices, for example, aptazymes, cell-free expression systems, and liposomes. For the integration of these new modules, the quantitative controls of each module based on the numerical simulation will be instructive. The capabilities of RTRACS promise to provide models of complex biomolecular systems that are able to detect the environment, assess the situation, and react to overcome the situation. Such a smart biomolecular system could be useful in many applications, such as drug delivery systems.

AB - Creating artificial biological systems is an important research endeavor. Each success contributes to synthetic biology and adds to our understanding of the functioning of the biomachinery of life. In the construction of large, complex systems, a modular approach simplifies the design process: a multilayered system can be prepared by integrating simple modules. With the concept of modularity, a variety of synthetic biological systems have been constructed, both in vivo and in vitro. But to properly develop systems with desired functions that integrate multiple modules, researchers need accurate mathematical models. In this Account, we review the development of a modularized artificial biological system known as RTRACS (reverse transcription and transcription-based autonomous computing system). In addition to modularity, model-guided predictability is an important feature of RTRACS.RTRACS has been developed as an in vitro artificial biological system through the assembly of RNA, DNA, and enzymes. A fundamental module of RTRACS receives an input RNA with a specific sequence and returns an output RNA with another specific sequence programmed in the main body, which is composed of DNA and enzymes. The conversion of the input RNA to the output RNA is achieved through a series of programmed reactions performed by the components assembled in the module. Through the substitution of a subset of components, a module that performs the AND operation was constructed. Other logical operations could be constructed with RTRACS modules. An integration of RTRACS modules has allowed the theoretical design of more complex functions, such as oscillation. The operations of these RTRACS modules were readily predicted with a numerical simulation based on a mathematical model using realistic parameters.RTRACS has the potential to model highly complex systems that function like a living cell. RTRACS was designed to be integrated with other molecules or molecular devices, for example, aptazymes, cell-free expression systems, and liposomes. For the integration of these new modules, the quantitative controls of each module based on the numerical simulation will be instructive. The capabilities of RTRACS promise to provide models of complex biomolecular systems that are able to detect the environment, assess the situation, and react to overcome the situation. Such a smart biomolecular system could be useful in many applications, such as drug delivery systems.

UR - http://www.scopus.com/inward/record.url?scp=84255209210&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84255209210&partnerID=8YFLogxK

U2 - 10.1021/ar200128b

DO - 10.1021/ar200128b

M3 - Article

VL - 44

SP - 1369

EP - 1379

JO - Accounts of Chemical Research

JF - Accounts of Chemical Research

SN - 0001-4842

IS - 12

ER -