Running with lower-body robot that mimics joint stiffness of humans

T. Otani, K. Hashimoto, M. Yahara, S. Miyamae, T. Isomichi, M. Sakaguchi, Y. Kawakami, H. O. Lim, A. Takanishi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Citations (Scopus)

Abstract

Human running motion can be modeled using a spring-loaded inverted pendulum (SLIP), where the linear-spring-like motion of the standing leg is produced by the joint stiffness of the knee and ankle. To use running speed control in the SLIP model, we should only decide the landing placement of the leg. However, for using running speed control with a multi-joint leg, we should also decide the joint angle and joint stiffness of the standing leg because these affect the direction of the ground reaction force. In this study, we develop a running control method for a human-like multi-joint leg. To achieve a running motion, we developed a running control method including pelvis oscillation control for attaining jumping power with the joint stiffness of the leg and running speed control by changing the landing placement of the leg. For using running speed control, we estimated the ground reaction force using the equation of motion and detected the joint angles of the leg for directing the ground reaction force toward the center of mass. To evaluate the proposed control methods, we compared the estimated ground reaction force with the force measured by the real robot. Moreover, we performed a running experiment with the developed running robot. By using ground reaction force estimation, this robot could accomplish the running motion with pelvic oscillation for attaining jumping power and running speed control.

Original languageEnglish
Title of host publicationIROS Hamburg 2015 - Conference Digest
Subtitle of host publicationIEEE/RSJ International Conference on Intelligent Robots and Systems
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3969-3974
Number of pages6
ISBN (Electronic)9781479999941
DOIs
Publication statusPublished - 2015 Dec 11
EventIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2015 - Hamburg, Germany
Duration: 2015 Sep 282015 Oct 2

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
Volume2015-December
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Other

OtherIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2015
Country/TerritoryGermany
CityHamburg
Period15/9/2815/10/2

Keywords

  • Force
  • Legged locomotion
  • Pelvis
  • Robot sensing systems
  • Springs
  • Velocity control

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Running with lower-body robot that mimics joint stiffness of humans'. Together they form a unique fingerprint.

Cite this