S3PRL-VC: OPEN-SOURCE VOICE CONVERSION FRAMEWORK WITH SELF-SUPERVISED SPEECH REPRESENTATIONS

Wen Chin Huang, Shu Wen Yang, Tomoki Hayashi, Hung Yi Lee, Shinji Watanabe, Tomoki Toda

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

This paper introduces S3PRL-VC, an open-source voice conversion (VC) framework based on the S3PRL toolkit. In the context of recognition-synthesis VC, self-supervised speech representation (S3R) is valuable in its potential to replace the expensive supervised representation adopted by state-of-the-art VC systems. Moreover, we claim that VC is a good probing task for S3R analysis. In this work, we provide a series of in-depth analyses by benchmarking on the two tasks in VCC2020, namely intra-/cross-lingual any-to-one (A2O) VC, as well as an any-to-any (A2A) setting. We also provide comparisons between not only different S3Rs but also top systems in VCC2020 with supervised representations. Systematic objective and subjective evaluation were conducted, and we show that S3R is comparable with VCC2020 top systems in the A2O setting in terms of similarity, and achieves state-of-the-art in S3R-based A2A VC. We believe the extensive analysis, as well as the toolkit itself, contribute to not only the S3R community but also the VC community. The codebase is now open-sourced.

Original languageEnglish
Title of host publication2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6552-6556
Number of pages5
ISBN (Electronic)9781665405409
DOIs
Publication statusPublished - 2022
Externally publishedYes
Event47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Virtual, Online, Singapore
Duration: 2022 May 232022 May 27

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2022-May
ISSN (Print)1520-6149

Conference

Conference47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022
Country/TerritorySingapore
CityVirtual, Online
Period22/5/2322/5/27

Keywords

  • open-source
  • self-supervised learning
  • self-supervised speech representation
  • voice conversion

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'S3PRL-VC: OPEN-SOURCE VOICE CONVERSION FRAMEWORK WITH SELF-SUPERVISED SPEECH REPRESENTATIONS'. Together they form a unique fingerprint.

Cite this