Scale invariant energy smoothing estimates for the Schrödinger equation with small magnetic potential

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

We consider some scale invariant generalizations of the smoothing estimates for the free Schrödinger equation obtained by Kenig, Ponce and Vega (Ann. Inst. H. Poincaré Anal. Non Lineaire 10(3) (1993), 255-288; Invent. Math. 134(3) (1998), 489-545). Applying these estimates and using appropriate commutator estimates, we obtain similar scale invariant smoothing estimates for perturbed Schrödinger equation with small magnetic potential.

Original languageEnglish
Pages (from-to)107-138
Number of pages32
JournalAsymptotic Analysis
Volume47
Issue number1-2
Publication statusPublished - 2006
Externally publishedYes

Fingerprint

Scale Invariant
Smoothing
Energy
Commutator Estimate
Estimate
Vega

Keywords

  • Magnetic potential
  • Schrödinger equation
  • Smoothing estimates

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Scale invariant energy smoothing estimates for the Schrödinger equation with small magnetic potential. / Gueorguiev, Vladimir Simeonov; Tarulli, Mirko.

In: Asymptotic Analysis, Vol. 47, No. 1-2, 2006, p. 107-138.

Research output: Contribution to journalArticle

@article{4bc704ce0b714802aa9698416f7404fd,
title = "Scale invariant energy smoothing estimates for the Schr{\"o}dinger equation with small magnetic potential",
abstract = "We consider some scale invariant generalizations of the smoothing estimates for the free Schr{\"o}dinger equation obtained by Kenig, Ponce and Vega (Ann. Inst. H. Poincar{\'e} Anal. Non Lineaire 10(3) (1993), 255-288; Invent. Math. 134(3) (1998), 489-545). Applying these estimates and using appropriate commutator estimates, we obtain similar scale invariant smoothing estimates for perturbed Schr{\"o}dinger equation with small magnetic potential.",
keywords = "Magnetic potential, Schr{\"o}dinger equation, Smoothing estimates",
author = "Gueorguiev, {Vladimir Simeonov} and Mirko Tarulli",
year = "2006",
language = "English",
volume = "47",
pages = "107--138",
journal = "Asymptotic Analysis",
issn = "0921-7134",
publisher = "IOS Press",
number = "1-2",

}

TY - JOUR

T1 - Scale invariant energy smoothing estimates for the Schrödinger equation with small magnetic potential

AU - Gueorguiev, Vladimir Simeonov

AU - Tarulli, Mirko

PY - 2006

Y1 - 2006

N2 - We consider some scale invariant generalizations of the smoothing estimates for the free Schrödinger equation obtained by Kenig, Ponce and Vega (Ann. Inst. H. Poincaré Anal. Non Lineaire 10(3) (1993), 255-288; Invent. Math. 134(3) (1998), 489-545). Applying these estimates and using appropriate commutator estimates, we obtain similar scale invariant smoothing estimates for perturbed Schrödinger equation with small magnetic potential.

AB - We consider some scale invariant generalizations of the smoothing estimates for the free Schrödinger equation obtained by Kenig, Ponce and Vega (Ann. Inst. H. Poincaré Anal. Non Lineaire 10(3) (1993), 255-288; Invent. Math. 134(3) (1998), 489-545). Applying these estimates and using appropriate commutator estimates, we obtain similar scale invariant smoothing estimates for perturbed Schrödinger equation with small magnetic potential.

KW - Magnetic potential

KW - Schrödinger equation

KW - Smoothing estimates

UR - http://www.scopus.com/inward/record.url?scp=33645522088&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33645522088&partnerID=8YFLogxK

M3 - Article

VL - 47

SP - 107

EP - 138

JO - Asymptotic Analysis

JF - Asymptotic Analysis

SN - 0921-7134

IS - 1-2

ER -