Scaling invariant Hardy inequalities of multiple logarithmic type on the whole space

Shuji Machihara, Tohru Ozawa, Hidemitsu Wadade

    Research output: Contribution to journalArticle

    7 Citations (Scopus)

    Abstract

    In this paper, we establish Hardy inequalities of logarithmic type involving singularities on spheres in R<sup>n</sup> in terms of the Sobolev-Lorentz-Zygmund spaces. We prove it by absorbing singularities of functions on the spheres by subtracting the corresponding limiting values.

    Original languageEnglish
    Article number281
    JournalJournal of Inequalities and Applications
    Volume2015
    Issue number1
    DOIs
    Publication statusPublished - 2015 Dec 25

    Fingerprint

    Hardy Inequality
    Logarithmic
    Scaling
    Singularity
    Invariant
    Absorbing
    Limiting

    Keywords

    • best constant
    • logarithmic Hardy inequality
    • scaling invariant space
    • Sobolev-Lorentz-Zygmund space

    ASJC Scopus subject areas

    • Analysis
    • Applied Mathematics
    • Discrete Mathematics and Combinatorics

    Cite this

    Scaling invariant Hardy inequalities of multiple logarithmic type on the whole space. / Machihara, Shuji; Ozawa, Tohru; Wadade, Hidemitsu.

    In: Journal of Inequalities and Applications, Vol. 2015, No. 1, 281, 25.12.2015.

    Research output: Contribution to journalArticle

    @article{f691d5c617844cc185be0b27e9671e9c,
    title = "Scaling invariant Hardy inequalities of multiple logarithmic type on the whole space",
    abstract = "In this paper, we establish Hardy inequalities of logarithmic type involving singularities on spheres in Rn in terms of the Sobolev-Lorentz-Zygmund spaces. We prove it by absorbing singularities of functions on the spheres by subtracting the corresponding limiting values.",
    keywords = "best constant, logarithmic Hardy inequality, scaling invariant space, Sobolev-Lorentz-Zygmund space",
    author = "Shuji Machihara and Tohru Ozawa and Hidemitsu Wadade",
    year = "2015",
    month = "12",
    day = "25",
    doi = "10.1186/s13660-015-0806-1",
    language = "English",
    volume = "2015",
    journal = "Journal of Inequalities and Applications",
    issn = "1025-5834",
    publisher = "Springer Publishing Company",
    number = "1",

    }

    TY - JOUR

    T1 - Scaling invariant Hardy inequalities of multiple logarithmic type on the whole space

    AU - Machihara, Shuji

    AU - Ozawa, Tohru

    AU - Wadade, Hidemitsu

    PY - 2015/12/25

    Y1 - 2015/12/25

    N2 - In this paper, we establish Hardy inequalities of logarithmic type involving singularities on spheres in Rn in terms of the Sobolev-Lorentz-Zygmund spaces. We prove it by absorbing singularities of functions on the spheres by subtracting the corresponding limiting values.

    AB - In this paper, we establish Hardy inequalities of logarithmic type involving singularities on spheres in Rn in terms of the Sobolev-Lorentz-Zygmund spaces. We prove it by absorbing singularities of functions on the spheres by subtracting the corresponding limiting values.

    KW - best constant

    KW - logarithmic Hardy inequality

    KW - scaling invariant space

    KW - Sobolev-Lorentz-Zygmund space

    UR - http://www.scopus.com/inward/record.url?scp=84942098688&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=84942098688&partnerID=8YFLogxK

    U2 - 10.1186/s13660-015-0806-1

    DO - 10.1186/s13660-015-0806-1

    M3 - Article

    AN - SCOPUS:84942098688

    VL - 2015

    JO - Journal of Inequalities and Applications

    JF - Journal of Inequalities and Applications

    SN - 1025-5834

    IS - 1

    M1 - 281

    ER -