Search error risk minimization in viterbi beam search for speech recognition

Takaaki Hori*, Shinji Watanabe, Atsushi Nakamura

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Citations (Scopus)

Abstract

This paper proposes a method to optimize Viterbi beam search based on search error risk minimization in large vocabulary continuous speech recognition (LVCSR). Most speech recognizers employ beam search to speed up the decoding process, in which unpromising partial hypotheses are pruned during decoding. However, the pruning step involves the risk of missing the best complete hypothesis by discarding a partial hypothesis that might grow into the best. Missing the best hypothesis is called search error. Our purpose is to reduce search error by optimizing the pruning step. While conventional methods use heuristic criteria to prune each hypothesis based on its score, rank, and so on, our proposed method introduces a pruning function that makes a more precise decision using the rich features extracted from each hypothesis. The parameters of the function can be estimated efficiently to minimize the search error risk using recognition lattices at the training step. We implemented the new method in a WFST-based decoder and achieved a significant reduction of search errors in a 200K-word LVCSR task.

Original languageEnglish
Title of host publication2010 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4934-4937
Number of pages4
ISBN (Print)9781424442966
DOIs
Publication statusPublished - 2010
Externally publishedYes
Event2010 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010 - Dallas, TX, United States
Duration: 2010 Mar 142010 Mar 19

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Conference

Conference2010 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010
Country/TerritoryUnited States
CityDallas, TX
Period10/3/1410/3/19

Keywords

  • Pruning
  • Search error
  • Viterbi beam search
  • WFST

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Search error risk minimization in viterbi beam search for speech recognition'. Together they form a unique fingerprint.

Cite this