Search for top-squark pair production in final states with one lepton, jets, and missing transverse momentum using 36 fb−1 of √s=13 TeV pp collision data with the ATLAS detector

The ATLAS Collaboration

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

The results of a search for the direct pair production of top squarks, the supersymmetric partner of the top quark, in final states with one isolated electron or muon, several energetic jets, and missing transverse momentum are reported. The analysis also targets spin-0 mediator models, where the mediator decays into a pair of dark-matter particles and is produced in association with a pair of top quarks. The search uses data from proton-proton collisions delivered by the Large Hadron Collider in 2015 and 2016 at a centre-of-mass energy of s=13 TeV and recorded by the ATLAS detector, corresponding to an integrated luminosity of 36 fb−1. A wide range of signal scenarios with different mass-splittings between the top squark, the lightest neutralino and possible intermediate supersymmetric particles are considered, including cases where the W bosons or the top quarks produced in the decay chain are off-shell. No significant excess over the Standard Model prediction is observed. The null results are used to set exclusion limits at 95% confidence level in several supersymmetry benchmark models. For pair-produced top-squarks decaying into top quarks, top-squark masses up to 940 GeV are excluded. Stringent exclusion limits are also derived for all other considered top-squark decay scenarios. For the spin-0 mediator models, upper limits are set on the visible cross-section.[Figure not available: see fulltext.]

Original languageEnglish
Article number108
JournalJournal of High Energy Physics
Volume2018
Issue number6
DOIs
Publication statusPublished - 2018 Jun 1

Fingerprint

pair production
transverse momentum
leptons
quarks
collisions
detectors
exclusion
decay
protons
supersymmetry
center of mass
muons
confidence
dark matter
bosons
luminosity
cross sections
predictions
electrons
energy

Keywords

  • Hadron-Hadron scattering (experiments)

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Cite this

@article{bc6bb5216780454dbc30ef7c811b31a0,
title = "Search for top-squark pair production in final states with one lepton, jets, and missing transverse momentum using 36 fb−1 of √s=13 TeV pp collision data with the ATLAS detector",
abstract = "The results of a search for the direct pair production of top squarks, the supersymmetric partner of the top quark, in final states with one isolated electron or muon, several energetic jets, and missing transverse momentum are reported. The analysis also targets spin-0 mediator models, where the mediator decays into a pair of dark-matter particles and is produced in association with a pair of top quarks. The search uses data from proton-proton collisions delivered by the Large Hadron Collider in 2015 and 2016 at a centre-of-mass energy of s=13 TeV and recorded by the ATLAS detector, corresponding to an integrated luminosity of 36 fb−1. A wide range of signal scenarios with different mass-splittings between the top squark, the lightest neutralino and possible intermediate supersymmetric particles are considered, including cases where the W bosons or the top quarks produced in the decay chain are off-shell. No significant excess over the Standard Model prediction is observed. The null results are used to set exclusion limits at 95{\%} confidence level in several supersymmetry benchmark models. For pair-produced top-squarks decaying into top quarks, top-squark masses up to 940 GeV are excluded. Stringent exclusion limits are also derived for all other considered top-squark decay scenarios. For the spin-0 mediator models, upper limits are set on the visible cross-section.[Figure not available: see fulltext.]",
keywords = "Hadron-Hadron scattering (experiments)",
author = "{The ATLAS Collaboration} and M. Aaboud and G. Aad and B. Abbott and O. Abdinov and B. Abeloos and Abidi, {S. H.} and AbouZeid, {O. S.} and Abraham, {N. L.} and H. Abramowicz and H. Abreu and R. Abreu and Y. Abulaiti and Acharya, {B. S.} and S. Adachi and L. Adamczyk and J. Adelman and M. Adersberger and T. Adye and Affolder, {A. A.} and Y. Afik and T. Agatonovic-Jovin and C. Agheorghiesei and Aguilar-Saavedra, {J. A.} and Ahlen, {S. P.} and F. Ahmadov and G. Aielli and S. Akatsuka and H. Akerstedt and {\AA}kesson, {T. P.A.} and E. Akilli and Akimov, {A. V.} and Alberghi, {G. L.} and J. Albert and P. Albicocco and {Alconada Verzini}, {M. J.} and Alderweireldt, {S. C.} and M. Aleksa and Aleksandrov, {I. N.} and C. Alexa and G. Alexander and T. Alexopoulos and M. Alhroob and B. Ali and M. Aliev and G. Alimonti and J. Alison and Alkire, {S. P.} and Takashi Mitani and Masahiro Morinaga and Kohei Yorita",
year = "2018",
month = "6",
day = "1",
doi = "10.1007/JHEP06(2018)108",
language = "English",
volume = "2018",
journal = "Journal of High Energy Physics",
issn = "1126-6708",
publisher = "Springer Verlag",
number = "6",

}

TY - JOUR

T1 - Search for top-squark pair production in final states with one lepton, jets, and missing transverse momentum using 36 fb−1 of √s=13 TeV pp collision data with the ATLAS detector

AU - The ATLAS Collaboration

AU - Aaboud, M.

AU - Aad, G.

AU - Abbott, B.

AU - Abdinov, O.

AU - Abeloos, B.

AU - Abidi, S. H.

AU - AbouZeid, O. S.

AU - Abraham, N. L.

AU - Abramowicz, H.

AU - Abreu, H.

AU - Abreu, R.

AU - Abulaiti, Y.

AU - Acharya, B. S.

AU - Adachi, S.

AU - Adamczyk, L.

AU - Adelman, J.

AU - Adersberger, M.

AU - Adye, T.

AU - Affolder, A. A.

AU - Afik, Y.

AU - Agatonovic-Jovin, T.

AU - Agheorghiesei, C.

AU - Aguilar-Saavedra, J. A.

AU - Ahlen, S. P.

AU - Ahmadov, F.

AU - Aielli, G.

AU - Akatsuka, S.

AU - Akerstedt, H.

AU - Åkesson, T. P.A.

AU - Akilli, E.

AU - Akimov, A. V.

AU - Alberghi, G. L.

AU - Albert, J.

AU - Albicocco, P.

AU - Alconada Verzini, M. J.

AU - Alderweireldt, S. C.

AU - Aleksa, M.

AU - Aleksandrov, I. N.

AU - Alexa, C.

AU - Alexander, G.

AU - Alexopoulos, T.

AU - Alhroob, M.

AU - Ali, B.

AU - Aliev, M.

AU - Alimonti, G.

AU - Alison, J.

AU - Alkire, S. P.

AU - Mitani, Takashi

AU - Morinaga, Masahiro

AU - Yorita, Kohei

PY - 2018/6/1

Y1 - 2018/6/1

N2 - The results of a search for the direct pair production of top squarks, the supersymmetric partner of the top quark, in final states with one isolated electron or muon, several energetic jets, and missing transverse momentum are reported. The analysis also targets spin-0 mediator models, where the mediator decays into a pair of dark-matter particles and is produced in association with a pair of top quarks. The search uses data from proton-proton collisions delivered by the Large Hadron Collider in 2015 and 2016 at a centre-of-mass energy of s=13 TeV and recorded by the ATLAS detector, corresponding to an integrated luminosity of 36 fb−1. A wide range of signal scenarios with different mass-splittings between the top squark, the lightest neutralino and possible intermediate supersymmetric particles are considered, including cases where the W bosons or the top quarks produced in the decay chain are off-shell. No significant excess over the Standard Model prediction is observed. The null results are used to set exclusion limits at 95% confidence level in several supersymmetry benchmark models. For pair-produced top-squarks decaying into top quarks, top-squark masses up to 940 GeV are excluded. Stringent exclusion limits are also derived for all other considered top-squark decay scenarios. For the spin-0 mediator models, upper limits are set on the visible cross-section.[Figure not available: see fulltext.]

AB - The results of a search for the direct pair production of top squarks, the supersymmetric partner of the top quark, in final states with one isolated electron or muon, several energetic jets, and missing transverse momentum are reported. The analysis also targets spin-0 mediator models, where the mediator decays into a pair of dark-matter particles and is produced in association with a pair of top quarks. The search uses data from proton-proton collisions delivered by the Large Hadron Collider in 2015 and 2016 at a centre-of-mass energy of s=13 TeV and recorded by the ATLAS detector, corresponding to an integrated luminosity of 36 fb−1. A wide range of signal scenarios with different mass-splittings between the top squark, the lightest neutralino and possible intermediate supersymmetric particles are considered, including cases where the W bosons or the top quarks produced in the decay chain are off-shell. No significant excess over the Standard Model prediction is observed. The null results are used to set exclusion limits at 95% confidence level in several supersymmetry benchmark models. For pair-produced top-squarks decaying into top quarks, top-squark masses up to 940 GeV are excluded. Stringent exclusion limits are also derived for all other considered top-squark decay scenarios. For the spin-0 mediator models, upper limits are set on the visible cross-section.[Figure not available: see fulltext.]

KW - Hadron-Hadron scattering (experiments)

UR - http://www.scopus.com/inward/record.url?scp=85049337628&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85049337628&partnerID=8YFLogxK

U2 - 10.1007/JHEP06(2018)108

DO - 10.1007/JHEP06(2018)108

M3 - Article

VL - 2018

JO - Journal of High Energy Physics

JF - Journal of High Energy Physics

SN - 1126-6708

IS - 6

M1 - 108

ER -