Self-Assembly of Shape Memory Polymer Printed by Fused Deposition Modeling

Akihiro Nojiri, Eiji Iwase, Michinao Hashimoto

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We demonstrated the method for self-assembly of a polyurethane-based shape memory polymer (SMP) printed by a fused deposition modeling (FDM) 3D printer. SMP transfers between a rubber state and a glass state by the change of temperature, and this characteristic is usually used for memorizing a 3D shape. In this study, we used this characteristic not for shape memory but for self-assembly. When a SMP filament is printed in a rubber state by FDM, some internal stress is introduced to the printed SMP structure. Above the glass transition temperature (T-{g}), the SMP structure transfers to a rubber state and releases internal stress and shrinks. Utilizing bi-layer structure with different shrink rate, we demonstrated that 2D SMP structures can transform into 3D structures. We achieved to control the rate and direction of shrinking by varying printing temperatures and patterns, which then allowed defining bending directions to form 3D structures.

Original languageEnglish
Title of host publication2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems, MEMS 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages380-383
Number of pages4
ISBN (Electronic)9781728116105
DOIs
Publication statusPublished - 2019 Jan
Externally publishedYes
Event32nd IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2019 - Seoul, Korea, Republic of
Duration: 2019 Jan 272019 Jan 31

Publication series

NameProceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
Volume2019-January
ISSN (Print)1084-6999

Conference

Conference32nd IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2019
CountryKorea, Republic of
CitySeoul
Period19/1/2719/1/31

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Self-Assembly of Shape Memory Polymer Printed by Fused Deposition Modeling'. Together they form a unique fingerprint.

  • Cite this

    Nojiri, A., Iwase, E., & Hashimoto, M. (2019). Self-Assembly of Shape Memory Polymer Printed by Fused Deposition Modeling. In 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems, MEMS 2019 (pp. 380-383). [8870849] (Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS); Vol. 2019-January). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/MEMSYS.2019.8870849