Self-doping inspired zwitterionic pendant design of radical polymers toward a rocking-chair-type organic cathode-active material

Il Seok Chae, Masafumi Koyano, Kenichi Oyaizu, Hiroyuki Nishide

Research output: Contribution to journalArticle

25 Citations (Scopus)

Abstract

'Self-doping' inspired high-density redox copolymers were designed and prepared via free radical copolymerization of 2,2,6,6-tetramethyl-4-piperidyl methacrylate and vinylsulfonic acid (VSA) with a view to preventing a change in salt concentration during the one-electron oxidation of the nitroxide radicals to N-oxoammonium cations in a polymer layer. A copolymer composition of TEMPO-sulfonate anionic group = 1/1 for density-maximized charge neutralization was achieved by controlling the feed ratio of the copolymerization. The formation of copolymers was evidenced by 2D nuclear Overhauser enhanced spectroscopy (NOESY) and diffusion ordered spectroscopy (DOSY) NMR. Poly(TEMPO methacrylate-stat-VSA) was considered to have the alternating tendency due to the acid-base interaction in the comonomers, which were supported not only by the single crystal structure of the 2,2,6,6-tetramethyl-4-piperidyl methacrylate and VSA complex, but also by the 1H-1H correlation in NOE signals. In an aqueous electrolyte with 0.5 M NaCl, the copolymer electrode showed a redox response near 0.66 V (vs. Ag/AgCl), and the excellent cycle performance during 1000 cycles. During the one-electron oxidation of the nitroxide radical, anionic sulfonate groups led to charge compensation of the N-oxoammonium cation. Consequently, the copolymer electrode exhibited the cation migration, which was evidenced by mass-transfer analysis using an electrochemical quartz crystal microbalance (EQCM) technique. The copolymer could be applied as an aqueous electrolyte-type organic rechargeable device. Moreover, this design proposes the ultimate principle toward the strategy of maximizing energy density in organic charge storage devices.

Original languageEnglish
Pages (from-to)1326-1333
Number of pages8
JournalJournal of Materials Chemistry A
Volume1
Issue number4
DOIs
Publication statusPublished - 2013 Jan 28

Fingerprint

Polymers
Cathodes
Copolymers
Doping (additives)
Methacrylates
Cations
Acids
Positive ions
Copolymerization
Electrolytes
Oxidation
Electrodes
Electrons
Quartz crystal microbalances
Charge density
Free radicals
Nuclear magnetic resonance spectroscopy
Free Radicals
Mass transfer
Salts

ASJC Scopus subject areas

  • Chemistry(all)
  • Renewable Energy, Sustainability and the Environment
  • Materials Science(all)

Cite this

Self-doping inspired zwitterionic pendant design of radical polymers toward a rocking-chair-type organic cathode-active material. / Chae, Il Seok; Koyano, Masafumi; Oyaizu, Kenichi; Nishide, Hiroyuki.

In: Journal of Materials Chemistry A, Vol. 1, No. 4, 28.01.2013, p. 1326-1333.

Research output: Contribution to journalArticle

@article{696354537dda47ffb04a3d3e78dc94be,
title = "Self-doping inspired zwitterionic pendant design of radical polymers toward a rocking-chair-type organic cathode-active material",
abstract = "'Self-doping' inspired high-density redox copolymers were designed and prepared via free radical copolymerization of 2,2,6,6-tetramethyl-4-piperidyl methacrylate and vinylsulfonic acid (VSA) with a view to preventing a change in salt concentration during the one-electron oxidation of the nitroxide radicals to N-oxoammonium cations in a polymer layer. A copolymer composition of TEMPO-sulfonate anionic group = 1/1 for density-maximized charge neutralization was achieved by controlling the feed ratio of the copolymerization. The formation of copolymers was evidenced by 2D nuclear Overhauser enhanced spectroscopy (NOESY) and diffusion ordered spectroscopy (DOSY) NMR. Poly(TEMPO methacrylate-stat-VSA) was considered to have the alternating tendency due to the acid-base interaction in the comonomers, which were supported not only by the single crystal structure of the 2,2,6,6-tetramethyl-4-piperidyl methacrylate and VSA complex, but also by the 1H-1H correlation in NOE signals. In an aqueous electrolyte with 0.5 M NaCl, the copolymer electrode showed a redox response near 0.66 V (vs. Ag/AgCl), and the excellent cycle performance during 1000 cycles. During the one-electron oxidation of the nitroxide radical, anionic sulfonate groups led to charge compensation of the N-oxoammonium cation. Consequently, the copolymer electrode exhibited the cation migration, which was evidenced by mass-transfer analysis using an electrochemical quartz crystal microbalance (EQCM) technique. The copolymer could be applied as an aqueous electrolyte-type organic rechargeable device. Moreover, this design proposes the ultimate principle toward the strategy of maximizing energy density in organic charge storage devices.",
author = "Chae, {Il Seok} and Masafumi Koyano and Kenichi Oyaizu and Hiroyuki Nishide",
year = "2013",
month = "1",
day = "28",
doi = "10.1039/c2ta00785a",
language = "English",
volume = "1",
pages = "1326--1333",
journal = "Journal of Materials Chemistry A",
issn = "2050-7488",
publisher = "Royal Society of Chemistry",
number = "4",

}

TY - JOUR

T1 - Self-doping inspired zwitterionic pendant design of radical polymers toward a rocking-chair-type organic cathode-active material

AU - Chae, Il Seok

AU - Koyano, Masafumi

AU - Oyaizu, Kenichi

AU - Nishide, Hiroyuki

PY - 2013/1/28

Y1 - 2013/1/28

N2 - 'Self-doping' inspired high-density redox copolymers were designed and prepared via free radical copolymerization of 2,2,6,6-tetramethyl-4-piperidyl methacrylate and vinylsulfonic acid (VSA) with a view to preventing a change in salt concentration during the one-electron oxidation of the nitroxide radicals to N-oxoammonium cations in a polymer layer. A copolymer composition of TEMPO-sulfonate anionic group = 1/1 for density-maximized charge neutralization was achieved by controlling the feed ratio of the copolymerization. The formation of copolymers was evidenced by 2D nuclear Overhauser enhanced spectroscopy (NOESY) and diffusion ordered spectroscopy (DOSY) NMR. Poly(TEMPO methacrylate-stat-VSA) was considered to have the alternating tendency due to the acid-base interaction in the comonomers, which were supported not only by the single crystal structure of the 2,2,6,6-tetramethyl-4-piperidyl methacrylate and VSA complex, but also by the 1H-1H correlation in NOE signals. In an aqueous electrolyte with 0.5 M NaCl, the copolymer electrode showed a redox response near 0.66 V (vs. Ag/AgCl), and the excellent cycle performance during 1000 cycles. During the one-electron oxidation of the nitroxide radical, anionic sulfonate groups led to charge compensation of the N-oxoammonium cation. Consequently, the copolymer electrode exhibited the cation migration, which was evidenced by mass-transfer analysis using an electrochemical quartz crystal microbalance (EQCM) technique. The copolymer could be applied as an aqueous electrolyte-type organic rechargeable device. Moreover, this design proposes the ultimate principle toward the strategy of maximizing energy density in organic charge storage devices.

AB - 'Self-doping' inspired high-density redox copolymers were designed and prepared via free radical copolymerization of 2,2,6,6-tetramethyl-4-piperidyl methacrylate and vinylsulfonic acid (VSA) with a view to preventing a change in salt concentration during the one-electron oxidation of the nitroxide radicals to N-oxoammonium cations in a polymer layer. A copolymer composition of TEMPO-sulfonate anionic group = 1/1 for density-maximized charge neutralization was achieved by controlling the feed ratio of the copolymerization. The formation of copolymers was evidenced by 2D nuclear Overhauser enhanced spectroscopy (NOESY) and diffusion ordered spectroscopy (DOSY) NMR. Poly(TEMPO methacrylate-stat-VSA) was considered to have the alternating tendency due to the acid-base interaction in the comonomers, which were supported not only by the single crystal structure of the 2,2,6,6-tetramethyl-4-piperidyl methacrylate and VSA complex, but also by the 1H-1H correlation in NOE signals. In an aqueous electrolyte with 0.5 M NaCl, the copolymer electrode showed a redox response near 0.66 V (vs. Ag/AgCl), and the excellent cycle performance during 1000 cycles. During the one-electron oxidation of the nitroxide radical, anionic sulfonate groups led to charge compensation of the N-oxoammonium cation. Consequently, the copolymer electrode exhibited the cation migration, which was evidenced by mass-transfer analysis using an electrochemical quartz crystal microbalance (EQCM) technique. The copolymer could be applied as an aqueous electrolyte-type organic rechargeable device. Moreover, this design proposes the ultimate principle toward the strategy of maximizing energy density in organic charge storage devices.

UR - http://www.scopus.com/inward/record.url?scp=84876553538&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84876553538&partnerID=8YFLogxK

U2 - 10.1039/c2ta00785a

DO - 10.1039/c2ta00785a

M3 - Article

VL - 1

SP - 1326

EP - 1333

JO - Journal of Materials Chemistry A

JF - Journal of Materials Chemistry A

SN - 2050-7488

IS - 4

ER -