Semilinear wave equation in Schwarzschild metric

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

We study the semilinear wave equation in Schwarzschild metric ((3 + 1)-dimensional space-time). First, we establish that the problem is locally well posed in Hσ for any σ ≥ 1; then we prove the blow up of the solution for every p ∈]2, 1 + √2[ and non-negative non-trivial initial data.

Original languageEnglish
Pages (from-to)661-683
Number of pages23
JournalNuovo Cimento della Societa Italiana di Fisica B
Volume119
Issue number7-9
DOIs
Publication statusPublished - 2004 Jul
Externally publishedYes

Fingerprint

Schwarzschild metric
wave equations

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this

Semilinear wave equation in Schwarzschild metric. / Catania, D.; Gueorguiev, Vladimir Simeonov.

In: Nuovo Cimento della Societa Italiana di Fisica B, Vol. 119, No. 7-9, 07.2004, p. 661-683.

Research output: Contribution to journalArticle

@article{825ca2b057ef4854bbe85c3173dfa3f4,
title = "Semilinear wave equation in Schwarzschild metric",
abstract = "We study the semilinear wave equation in Schwarzschild metric ((3 + 1)-dimensional space-time). First, we establish that the problem is locally well posed in Hσ for any σ ≥ 1; then we prove the blow up of the solution for every p ∈]2, 1 + √2[ and non-negative non-trivial initial data.",
author = "D. Catania and Gueorguiev, {Vladimir Simeonov}",
year = "2004",
month = "7",
doi = "10.1393/ncb/i2004-10176-8",
language = "English",
volume = "119",
pages = "661--683",
journal = "Nuovo Cimento della Societa Italiana di Fisica B",
issn = "1594-9982",
publisher = "Editrice Compositori s.r.l.",
number = "7-9",

}

TY - JOUR

T1 - Semilinear wave equation in Schwarzschild metric

AU - Catania, D.

AU - Gueorguiev, Vladimir Simeonov

PY - 2004/7

Y1 - 2004/7

N2 - We study the semilinear wave equation in Schwarzschild metric ((3 + 1)-dimensional space-time). First, we establish that the problem is locally well posed in Hσ for any σ ≥ 1; then we prove the blow up of the solution for every p ∈]2, 1 + √2[ and non-negative non-trivial initial data.

AB - We study the semilinear wave equation in Schwarzschild metric ((3 + 1)-dimensional space-time). First, we establish that the problem is locally well posed in Hσ for any σ ≥ 1; then we prove the blow up of the solution for every p ∈]2, 1 + √2[ and non-negative non-trivial initial data.

UR - http://www.scopus.com/inward/record.url?scp=17744399949&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=17744399949&partnerID=8YFLogxK

U2 - 10.1393/ncb/i2004-10176-8

DO - 10.1393/ncb/i2004-10176-8

M3 - Article

VL - 119

SP - 661

EP - 683

JO - Nuovo Cimento della Societa Italiana di Fisica B

JF - Nuovo Cimento della Societa Italiana di Fisica B

SN - 1594-9982

IS - 7-9

ER -