Sentiment assessment of text by analyzing linguistic features and contextual valence assignment

Mostafa Al Masum Shaikh, Helmut Prendinger, Mitsuru Ishizuka

Research output: Contribution to journalArticlepeer-review

34 Citations (Scopus)


Text is not only an important medium to describe facts and events, but also to effectively communicate information about the writer's positive or negative sentiment underlying an opinion, or to express an affective or emotional state, such as happiness, fearfulness, surpriseness, and so on. We consider sentiment assessment and emotion sensing from text as two different problems, whereby sentiment assessment is the task that we want to solve first. Thus, this article presents an approach to sentiment assessment, i.e., the recognition of negative or positive valence of a sentence. For the purpose of sentiment recognition from text, we perform semantic dependency analysis on the semantic verb frames of each sentence, and then apply a set of rules to each dependency relation to calculate the contextual valence of the whole sentence. By employing a domain-independent, rule-based approach our system is able to automatically identify sentence-level sentiment. A linguistic tool called "SenseNet" has been developed to recognize sentiments in text, and to visualize the detected sentiments. We conducted several experiments with a variety of datasets containing data from different domains. The obtained results indicate significant performance gains over existing state-of-the-art approaches.

Original languageEnglish
Pages (from-to)558-601
Number of pages44
JournalApplied Artificial Intelligence
Issue number6
Publication statusPublished - 2008 Jul
Externally publishedYes

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Artificial Intelligence


Dive into the research topics of 'Sentiment assessment of text by analyzing linguistic features and contextual valence assignment'. Together they form a unique fingerprint.

Cite this