TY - JOUR
T1 - SFT-4/Surf4 control ER export of soluble cargo proteins and participate in ER exit site organization
AU - Saegusa, Keiko
AU - Sato, Miyuki
AU - Morooka, Nobukatsu
AU - Hara, Taichi
AU - Sato, Ken
N1 - Funding Information:
We thank Dr. Barth D. Grant for supplying reagents. Certain strains used in this study were provided by the Caenorhabditis Genetic Center, which is funded by the National Institutes of Health Office of Research Infrastructure Programs (grant P40 OD010440). We also thank Katsuya Sato, Dr. Rika Hirai, and the other members of the Sato laboratory, Drs. Aisa Sakaguchi (Osaka University), Kota Saito (University of Tokyo), Toyoshi Fujimoto (Nagoya University), Satoshi Yoshida (Waseda University), and Ken Sato (University of Tokyo), for technical assistance and discussions. K. Sato was supported by the Japan Society for the Promotion of Science KAK ENHI (grants 26291036, 17K19377, and 17H03669), the Uehara Memorial Foundation, the Ono Medical Research Foundation, and the Takeda Science Foundation. M. Sato was supported by the Ministry of Education, Culture, Sports, Science and Technology KAK ENHI (grant 16H01191). K. Saegusa was supported by a Grant-in-Aid for Japan Society for the Promotion of Science Fellows (grant 16J11698). This work was supported by the Joint Research Program of the Institute for Molecular and Cellular Regulation at Gunma University
Funding Information:
We thank Dr. Barth D. Grant for supplying reagents. Certain strains used in this study were provided by the Caenorhabditis Genetic Center, which is funded by the National Institutes of Health Office of Research Infrastructure Programs (grant P40 OD010440). We also thank Katsuya Sato, Dr. Rika Hirai, and the other members of the Sato laboratory, Drs. Aisa Sakaguchi (Osaka University), Kota Saito (University of Tokyo), Toyoshi Fujimoto (Nagoya University), Satoshi Yoshida (Waseda University), and Ken Sato (University of Tokyo), for technical assistance and discussions.
Funding Information:
K. Sato was supported by the Japan Society for the Promotion of Science KAKENHI (grants 26291036, 17K19377, and 17H03669), the Uehara Memorial Foundation, the Ono Medical Research Foundation, and the Takeda Science Foundation. M. Sato was supported by the Ministry of Education, Culture, Sports, Science and Technology KAKENHI (grant 16H01191). K. Saegusa was supported by a Grant-in-Aid for Japan Society for the Promotion of Science Fellows (grant 16J11698). This work was supported by the Joint Research Program of the Institute for Molecular and Cellular Regulation at Gunma University. The authors declare no competing financial interests.
Publisher Copyright:
© 2018 Saegusa et al.
PY - 2018/6/1
Y1 - 2018/6/1
N2 - Lipoproteins regulate the overall lipid homeostasis in animals. However, the molecular mechanisms underlying lipoprotein trafficking remain poorly understood. Here, we show that SFT-4, a Caenorhabditis elegans homologue of the yeast Erv29p, is essential for the endoplasmic reticulum (ER) export of the yolk protein VIT-2, which is synthesized as a lipoprotein complex. SFT-4 loss strongly inhibits the ER exit of yolk proteins and certain soluble cargo proteins in intestinal cells. SFT-4 predominantly localizes at ER exit sites (ERES) and physically interacts with VIT-2 in vivo, which suggests that SFT-4 promotes the ER export of soluble proteins as a cargo receptor. Notably, Surf4, a mammalian SFT-4 homologue, physically interacts with apolipoprotein B, a very-low-density lipoprotein core protein, and its loss causes ER accumulation of apolipoprotein B in human hepatic HepG2 cells. Interestingly, loss of SFT-4 and Surf4 reduced the number of COP II-positive ERES. Thus, SFT-4 and Surf4 regulate the export of soluble proteins, including lipoproteins, from the ER and participate in ERES organization in animals.
AB - Lipoproteins regulate the overall lipid homeostasis in animals. However, the molecular mechanisms underlying lipoprotein trafficking remain poorly understood. Here, we show that SFT-4, a Caenorhabditis elegans homologue of the yeast Erv29p, is essential for the endoplasmic reticulum (ER) export of the yolk protein VIT-2, which is synthesized as a lipoprotein complex. SFT-4 loss strongly inhibits the ER exit of yolk proteins and certain soluble cargo proteins in intestinal cells. SFT-4 predominantly localizes at ER exit sites (ERES) and physically interacts with VIT-2 in vivo, which suggests that SFT-4 promotes the ER export of soluble proteins as a cargo receptor. Notably, Surf4, a mammalian SFT-4 homologue, physically interacts with apolipoprotein B, a very-low-density lipoprotein core protein, and its loss causes ER accumulation of apolipoprotein B in human hepatic HepG2 cells. Interestingly, loss of SFT-4 and Surf4 reduced the number of COP II-positive ERES. Thus, SFT-4 and Surf4 regulate the export of soluble proteins, including lipoproteins, from the ER and participate in ERES organization in animals.
UR - http://www.scopus.com/inward/record.url?scp=85048113076&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85048113076&partnerID=8YFLogxK
U2 - 10.1083/jcb.201708115
DO - 10.1083/jcb.201708115
M3 - Article
C2 - 29643117
AN - SCOPUS:85048113076
SN - 0021-9525
VL - 217
SP - 2073
EP - 2085
JO - Journal of Cell Biology
JF - Journal of Cell Biology
IS - 6
ER -