Abstract
Predicting entailment between two given texts is an important task upon which the performance of numerous NLP tasks depend on such as question answering, text summarization, and information extraction. The degree to which two texts are similar has been used extensively as a key feature in much previous work in predicting entailment. However, using similarity scores directly, without proper transformations, results in suboptimal performance. Given a set of lexical similarity measures, we propose a method that jointly learns both (a) a set of non-linear transformation functions for those similarity measures and, (b) the optimal non-linear combination of those transformation functions to predict textual entailment. Our method consistently outperforms numerous baselines, reporting a micro-averaged F-score of 46.48 on the RTE-7 benchmark dataset. The proposed method is ranked 2-nd among 33 entailment systems participated in RTE-7, demonstrating its competitiveness over numerous other entailment approaches. Although our method is statistically comparable to the current state-of-the-art, we require less external knowledge resources.
Original language | English |
---|---|
Title of host publication | Proceedings of the National Conference on Artificial Intelligence |
Pages | 1720-1726 |
Number of pages | 7 |
Volume | 2 |
Publication status | Published - 2012 |
Externally published | Yes |
Event | 26th AAAI Conference on Artificial Intelligence and the 24th Innovative Applications of Artificial Intelligence Conference, AAAI-12 / IAAI-12 - Toronto, ON Duration: 2012 Jul 22 → 2012 Jul 26 |
Other
Other | 26th AAAI Conference on Artificial Intelligence and the 24th Innovative Applications of Artificial Intelligence Conference, AAAI-12 / IAAI-12 |
---|---|
City | Toronto, ON |
Period | 12/7/22 → 12/7/26 |
ASJC Scopus subject areas
- Software
- Artificial Intelligence