TY - JOUR
T1 - SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE IN SPATIAL AXISYMMETRY WITH FULL BOLTZMANN NEUTRINO TRANSPORT
AU - Nagakura, Hiroki
AU - Iwakami, Wakana
AU - Furusawa, Shun
AU - Okawa, Hirotada
AU - Harada, Akira
AU - Sumiyoshi, Kohsuke
AU - Yamada, Shoichi
AU - Matsufuru, Hideo
AU - Imakura, Akira
N1 - Publisher Copyright:
Copyright © 2017, The Authors. All rights reserved.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2017/2/6
Y1 - 2017/2/6
N2 - We present the first results of our spatially axisymmetric core-collapse supernova simulations with full Boltzmann neutrino transport, which amount to a time-dependent 5-dimensional (2 in space and 3 in momentum space) problem in fact. Special relativistic effects are fully taken into account with a two-energy-grid technique. We performed two simulations for a progenitor of 11.2M☉, employing different nuclear equations-of-state (EOS’s): Lattimer and Swesty’s EOS with the incompressibility of K = 220MeV (LS EOS) and Furusawa’s EOS based on the relativistic mean field theory with the TM1 parameter set (FS EOS). In the LS EOS the shock wave reaches ∼ 700km at 300ms after bounce and is still expanding whereas in the FS EOS it stalled at ∼ 200km and has started to recede by the same time. This seems to be due to more vigorous turbulent motions in the former during the entire post-bounce phase, which leads to higher neutrino-heating efficiency in the neutrino-driven convection. We also look into the neutrino distributions in momentum space, which is the advantage of the Boltzmann transport over other approximate methods. We find non-axisymmetric angular distributions with respect to the local radial direction, which also generate off-diagonal components of the Eddington tensor. We find that the rθ-component reaches ∼ 10% of the dominant rr-component and, more importantly, it dictates the evolution of lateral neutrino fluxes, dominating over the θθ-component, in the semi-transparent region. These data will be useful to further test and possibly improve the prescriptions used in the approximate methods.
AB - We present the first results of our spatially axisymmetric core-collapse supernova simulations with full Boltzmann neutrino transport, which amount to a time-dependent 5-dimensional (2 in space and 3 in momentum space) problem in fact. Special relativistic effects are fully taken into account with a two-energy-grid technique. We performed two simulations for a progenitor of 11.2M☉, employing different nuclear equations-of-state (EOS’s): Lattimer and Swesty’s EOS with the incompressibility of K = 220MeV (LS EOS) and Furusawa’s EOS based on the relativistic mean field theory with the TM1 parameter set (FS EOS). In the LS EOS the shock wave reaches ∼ 700km at 300ms after bounce and is still expanding whereas in the FS EOS it stalled at ∼ 200km and has started to recede by the same time. This seems to be due to more vigorous turbulent motions in the former during the entire post-bounce phase, which leads to higher neutrino-heating efficiency in the neutrino-driven convection. We also look into the neutrino distributions in momentum space, which is the advantage of the Boltzmann transport over other approximate methods. We find non-axisymmetric angular distributions with respect to the local radial direction, which also generate off-diagonal components of the Eddington tensor. We find that the rθ-component reaches ∼ 10% of the dominant rr-component and, more importantly, it dictates the evolution of lateral neutrino fluxes, dominating over the θθ-component, in the semi-transparent region. These data will be useful to further test and possibly improve the prescriptions used in the approximate methods.
KW - Neutrinos—hydrodynamics
KW - Supernovae: general
UR - http://www.scopus.com/inward/record.url?scp=85094700973&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85094700973&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:85094700973
JO - Nuclear Physics A
JF - Nuclear Physics A
SN - 0375-9474
ER -