Smoothing effect for some Schrödinger equations

Nakao Hayashi, Tohru Ozawa

Research output: Contribution to journalArticle

40 Citations (Scopus)

Abstract

We study the Cauchy problem for the following Schrödinger equation in Rn(n∈N): i∂tu + 1 2Δu = V1u + (V2 * |u|2)u, (t,x)∈R×Rn, u(0) = φ, x∈Rn, (**) where V1 = V1(x) = λ1 |x|-γ1, V2 = V2(x) = ∑k = 2 3 λk |x|-γk, λk∈R (1 ≤ k ≤ 3), 0 < γ1 < min(2, n 2), 0 < γ2, γ3 < min(2, n). We prove the existence, uniqueness, and smoothing effect of global solutions of (**) with φ not necessarily in the Sobolev space H1(Rn).

Original languageEnglish
Pages (from-to)307-348
Number of pages42
JournalJournal of Functional Analysis
Volume85
Issue number2
DOIs
Publication statusPublished - 1989
Externally publishedYes

Fingerprint

Smoothing Effect
Global Solution
Sobolev Spaces
Cauchy Problem
Existence and Uniqueness

ASJC Scopus subject areas

  • Analysis

Cite this

Smoothing effect for some Schrödinger equations. / Hayashi, Nakao; Ozawa, Tohru.

In: Journal of Functional Analysis, Vol. 85, No. 2, 1989, p. 307-348.

Research output: Contribution to journalArticle

@article{8f0df9f7a84c4f92ab2eca8175af7a29,
title = "Smoothing effect for some Schr{\"o}dinger equations",
abstract = "We study the Cauchy problem for the following Schr{\"o}dinger equation in Rn(n∈N): i∂tu + 1 2Δu = V1u + (V2 * |u|2)u, (t,x)∈R×Rn, u(0) = φ, x∈Rn, (**) where V1 = V1(x) = λ1 |x|-γ1, V2 = V2(x) = ∑k = 2 3 λk |x|-γk, λk∈R (1 ≤ k ≤ 3), 0 < γ1 < min(2, n 2), 0 < γ2, γ3 < min(2, n). We prove the existence, uniqueness, and smoothing effect of global solutions of (**) with φ not necessarily in the Sobolev space H1(Rn).",
author = "Nakao Hayashi and Tohru Ozawa",
year = "1989",
doi = "10.1016/0022-1236(89)90039-6",
language = "English",
volume = "85",
pages = "307--348",
journal = "Journal of Functional Analysis",
issn = "0022-1236",
publisher = "Academic Press Inc.",
number = "2",

}

TY - JOUR

T1 - Smoothing effect for some Schrödinger equations

AU - Hayashi, Nakao

AU - Ozawa, Tohru

PY - 1989

Y1 - 1989

N2 - We study the Cauchy problem for the following Schrödinger equation in Rn(n∈N): i∂tu + 1 2Δu = V1u + (V2 * |u|2)u, (t,x)∈R×Rn, u(0) = φ, x∈Rn, (**) where V1 = V1(x) = λ1 |x|-γ1, V2 = V2(x) = ∑k = 2 3 λk |x|-γk, λk∈R (1 ≤ k ≤ 3), 0 < γ1 < min(2, n 2), 0 < γ2, γ3 < min(2, n). We prove the existence, uniqueness, and smoothing effect of global solutions of (**) with φ not necessarily in the Sobolev space H1(Rn).

AB - We study the Cauchy problem for the following Schrödinger equation in Rn(n∈N): i∂tu + 1 2Δu = V1u + (V2 * |u|2)u, (t,x)∈R×Rn, u(0) = φ, x∈Rn, (**) where V1 = V1(x) = λ1 |x|-γ1, V2 = V2(x) = ∑k = 2 3 λk |x|-γk, λk∈R (1 ≤ k ≤ 3), 0 < γ1 < min(2, n 2), 0 < γ2, γ3 < min(2, n). We prove the existence, uniqueness, and smoothing effect of global solutions of (**) with φ not necessarily in the Sobolev space H1(Rn).

UR - http://www.scopus.com/inward/record.url?scp=38249025921&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=38249025921&partnerID=8YFLogxK

U2 - 10.1016/0022-1236(89)90039-6

DO - 10.1016/0022-1236(89)90039-6

M3 - Article

VL - 85

SP - 307

EP - 348

JO - Journal of Functional Analysis

JF - Journal of Functional Analysis

SN - 0022-1236

IS - 2

ER -