Sn-O-C composite anode for Li secondary battery synthesized by an electrodeposition technique using organic carbonate electrolyte

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

The Sn-O-C composite anode for the Li secondary battery was synthesized by electrodeposition using an organic carbonate solvent. The composite of Sn with organic/inorganic compounds was prepared by the simultaneous reaction of the reduction of Sn2+ ions and electrolysis of the mixture of ethylene carbonate and propylene carbonate. The galvanostatic potential transients for the electrodeposition of the Sn-O-C composite indicate that multiple steps of reactions corresponding to the electrochemical reduction of the tin precursor and the decomposition of organic solvents are involved. The morphology, crystalline structure and chemical composition of the as-deposited Sn-O-C composite anode were characterized to elucidate the mechanism of the synthesis of the buffering matrix enduring volume expansion. The electrochemical behavior of the Sn-O-C composite anode was investigated by cyclic voltammetry and galvanostatical charge/discharged tests. The discharge capacity of 465 mAh (g of Sn)-1 was obtained at the 100th cycle showing 80% of the capacity retention after the 100th cycle. The discharge capacity was stable after the 50th cycle, where the phase transformation of the Sn element from Sn to Li 0.4Sn at the discharged state was found.

Original languageEnglish
Pages (from-to)527-532
Number of pages6
JournalJournal of Power Sources
Volume242
DOIs
Publication statusPublished - 2013 Jun 26

Keywords

  • Anode
  • Electrodeposition
  • Lithium secondary battery
  • Sn-O-C composite
  • Tin

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Physical and Theoretical Chemistry
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Sn-O-C composite anode for Li secondary battery synthesized by an electrodeposition technique using organic carbonate electrolyte'. Together they form a unique fingerprint.

Cite this