TY - JOUR
T1 - Solar Heat-Enhanced Energy Conversion in Devices Based on Photosynthetic Membranes and PEDOT:PSS-Nanocellulose Electrodes
AU - Méhes, Gábor
AU - Vagin, Mikhail
AU - Mulla, Mohammad Yusuf
AU - Granberg, Hjalmar
AU - Che, Canyan
AU - Beni, Valerio
AU - Crispin, Xavier
AU - Berggren, Magnus
AU - Stavrinidou, Eleni
AU - Simon, Daniel T.
N1 - Funding Information:
Major funding for this project was provided by the Knut and Alice Wallenberg Foundation and the Swedish Foundation for Strategic Research. Additional funding was provided by the ?nnesj? Foundation and the Research Institutes of Sweden (project: Bio-based electronics). G.M. was also supported by a grant from the Swedish MSCA Seal of Excellence program. G.M. was also supported by a grant from the Swedish MSCA Seal of Excellence program (Vinnova grant 2017-03121). The authors wish to thank Prof. Hans-Erik ?kerlund for advice on extraction of TMs; Dr. Jesper Edberg and Dr. Zia Ullah Khan for advice on PEDOT:PSS-CNF and PEDOT:PSS films; Dr. Pawel Wojcik for providing electrochemical setups for testing and related advice; Dr. Robert Brooke for providing GL/ITO substrates; Gustav Knutsson, Dr. Daniel Tordera, and Dr. Francesco Milano for providing experimental help and/or advice regarding excitation and heat sources; Thor Balkhed for help with video editing; and Dr. Eliot Gomez, Dr. Iwona Bernacka-Wojcik, Assoc. Prof. Magnus Jonsson, and Johannes Gladisch for fruitful discussions.
Publisher Copyright:
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2020/1/1
Y1 - 2020/1/1
N2 - Energy harvesting from photosynthetic membranes, proteins, or bacteria through bio-photovoltaic or bio-electrochemical approaches has been proposed as a new route to clean energy. A major shortcoming of these and solar cell technologies is the underutilization of solar irradiation wavelengths in the IR region, especially those in the far IR region. Here, a biohybrid energy-harvesting device is demonstrated that exploits IR radiation, via convection and thermoelectric effects, to improve the resulting energy conversion performance. A composite of nanocellulose and the conducting polymer system poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is used as the anode in biohybrid cells that includes thylakoid membranes (TMs) and redox mediators (RMs) in solution. By irradiating the conducting polymer electrode by an IR light-emitting diode, a sixfold enhancement in the harvested bio-photovoltaic power is achieved, without compromising stability of operation. Investigation of the output currents reveals that IR irradiation generates convective heat transfer in the electrolyte bulk, which enhances the redox reactions of RMs at the anode by suppressing diffusion limitations. In addition, a fast-transient thermoelectric component, originating from the PEDOT:PSS-nanocellulose-electrolyte interphase, further increases the bio-photocurrent. These results pave the way for the development of energy-harvesting biohybrids that make use of heat, via IR absorption, to enhance energy conversion efficiency.
AB - Energy harvesting from photosynthetic membranes, proteins, or bacteria through bio-photovoltaic or bio-electrochemical approaches has been proposed as a new route to clean energy. A major shortcoming of these and solar cell technologies is the underutilization of solar irradiation wavelengths in the IR region, especially those in the far IR region. Here, a biohybrid energy-harvesting device is demonstrated that exploits IR radiation, via convection and thermoelectric effects, to improve the resulting energy conversion performance. A composite of nanocellulose and the conducting polymer system poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is used as the anode in biohybrid cells that includes thylakoid membranes (TMs) and redox mediators (RMs) in solution. By irradiating the conducting polymer electrode by an IR light-emitting diode, a sixfold enhancement in the harvested bio-photovoltaic power is achieved, without compromising stability of operation. Investigation of the output currents reveals that IR irradiation generates convective heat transfer in the electrolyte bulk, which enhances the redox reactions of RMs at the anode by suppressing diffusion limitations. In addition, a fast-transient thermoelectric component, originating from the PEDOT:PSS-nanocellulose-electrolyte interphase, further increases the bio-photocurrent. These results pave the way for the development of energy-harvesting biohybrids that make use of heat, via IR absorption, to enhance energy conversion efficiency.
KW - bio-photoelectrochemical cells
KW - bio-photovoltaic cells
KW - energy harvesting
KW - infrared
KW - nanocellulose
KW - PEDOT:PSS
KW - thylakoid membranes
UR - http://www.scopus.com/inward/record.url?scp=85077874472&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85077874472&partnerID=8YFLogxK
U2 - 10.1002/adsu.201900100
DO - 10.1002/adsu.201900100
M3 - Article
AN - SCOPUS:85077874472
SN - 2366-7486
VL - 4
JO - Advanced Sustainable Systems
JF - Advanced Sustainable Systems
IS - 1
M1 - 1900100
ER -