Solar radiation and the validity of infrared tympanic temperature during exercise in the heat

Hidenori Otani, Mitsuharu Kaya, Akira Tamaki, Yuri Hosokawa, Jason K.W. Lee

Research output: Contribution to journalArticle

Abstract

We investigated the validity of infrared tympanic temperature (IR-Tty) during exercise in the heat with variations in solar radiation. Eight healthy males completed stationary cycling trials at 70% peak oxygen uptake until exhaustion in an environmental chamber maintained at 30°C with 50% relative humidity. Three solar radiation conditions, 0, 250 and 500 W/m2, were tested using a ceiling-mounted solar simulator (metal-halide lamps) over a 3 × 2 m irradiated area. IR-Tty and rectal temperature (Tre) were similar before and during exercise in each trial (P > 0.05). Spearman’s rank correlation coefficient (rs) demonstrated very strong (250 W/m2, rs = 0.87) and strong (0 W/m2, rs = 0.73; 500 W/m2, rs = 0.78) correlations between IR-Tty and Tre in all trials (P < 0.001). A Bland-Altman plot showed that mean differences (SD; 95% limits of agreement; root mean square error) between IR-Tty and Tre were − 0.11°C (0.46; − 1.00 to 0.78°C; 0.43 ± 0.16°C) in 0 W/m2, − 0.13°C (0.32; − 0.77 to 0.50°C; 0.32 ± 0.10°C) in 250 W/m2 and − 0.03°C (0.60; − 1.21 to 1.14°C; 0.46 ± 0.27°C) in 500 W/m2. A positive correlation was found in 500 W/m2 (rs = 0.51; P < 0.001) but not in 250 W/m2 (rs = 0.04; P = 0.762) and 0 W/m2 (rs = 0.04; P = 0.732), indicating a greater elevation in IR-Tty than Tre in 500 W/m2. Percentage of target attainment within ± 0.3°C between IR-Tty and Tre was higher in 250 W/m2 (100 ± 0%) than 0 (93 ± 7%) and 500 (90 ± 10%; P < 0.05) W/m2. IR-Tty is acceptable for core temperature monitoring during exercise in the heat when solar radiation is ≤ 500 W/m2, and its accuracy increases when solar radiation is 250 W/m2 under our study conditions.

Original languageEnglish
JournalInternational Journal of Biometeorology
DOIs
Publication statusAccepted/In press - 2019 Jan 1

Fingerprint

solar radiation
Hot Temperature
Radiation
Temperature
temperature
halide
Nonparametric Statistics
simulator
Humidity
relative humidity
Metals
oxygen
Oxygen
metal
monitoring
trial

Keywords

  • Core temperature
  • Heat stress
  • Physical activity
  • Sunlight

ASJC Scopus subject areas

  • Ecology
  • Atmospheric Science
  • Health, Toxicology and Mutagenesis

Cite this

Solar radiation and the validity of infrared tympanic temperature during exercise in the heat. / Otani, Hidenori; Kaya, Mitsuharu; Tamaki, Akira; Hosokawa, Yuri; Lee, Jason K.W.

In: International Journal of Biometeorology, 01.01.2019.

Research output: Contribution to journalArticle

@article{b91b39a0e9f44ce2a13c42ca4f706b7f,
title = "Solar radiation and the validity of infrared tympanic temperature during exercise in the heat",
abstract = "We investigated the validity of infrared tympanic temperature (IR-Tty) during exercise in the heat with variations in solar radiation. Eight healthy males completed stationary cycling trials at 70{\%} peak oxygen uptake until exhaustion in an environmental chamber maintained at 30°C with 50{\%} relative humidity. Three solar radiation conditions, 0, 250 and 500 W/m2, were tested using a ceiling-mounted solar simulator (metal-halide lamps) over a 3 × 2 m irradiated area. IR-Tty and rectal temperature (Tre) were similar before and during exercise in each trial (P > 0.05). Spearman’s rank correlation coefficient (rs) demonstrated very strong (250 W/m2, rs = 0.87) and strong (0 W/m2, rs = 0.73; 500 W/m2, rs = 0.78) correlations between IR-Tty and Tre in all trials (P < 0.001). A Bland-Altman plot showed that mean differences (SD; 95{\%} limits of agreement; root mean square error) between IR-Tty and Tre were − 0.11°C (0.46; − 1.00 to 0.78°C; 0.43 ± 0.16°C) in 0 W/m2, − 0.13°C (0.32; − 0.77 to 0.50°C; 0.32 ± 0.10°C) in 250 W/m2 and − 0.03°C (0.60; − 1.21 to 1.14°C; 0.46 ± 0.27°C) in 500 W/m2. A positive correlation was found in 500 W/m2 (rs = 0.51; P < 0.001) but not in 250 W/m2 (rs = 0.04; P = 0.762) and 0 W/m2 (rs = 0.04; P = 0.732), indicating a greater elevation in IR-Tty than Tre in 500 W/m2. Percentage of target attainment within ± 0.3°C between IR-Tty and Tre was higher in 250 W/m2 (100 ± 0{\%}) than 0 (93 ± 7{\%}) and 500 (90 ± 10{\%}; P < 0.05) W/m2. IR-Tty is acceptable for core temperature monitoring during exercise in the heat when solar radiation is ≤ 500 W/m2, and its accuracy increases when solar radiation is 250 W/m2 under our study conditions.",
keywords = "Core temperature, Heat stress, Physical activity, Sunlight",
author = "Hidenori Otani and Mitsuharu Kaya and Akira Tamaki and Yuri Hosokawa and Lee, {Jason K.W.}",
year = "2019",
month = "1",
day = "1",
doi = "10.1007/s00484-019-01791-1",
language = "English",
journal = "International Journal of Biometeorology",
issn = "0020-7128",
publisher = "Springer New York",

}

TY - JOUR

T1 - Solar radiation and the validity of infrared tympanic temperature during exercise in the heat

AU - Otani, Hidenori

AU - Kaya, Mitsuharu

AU - Tamaki, Akira

AU - Hosokawa, Yuri

AU - Lee, Jason K.W.

PY - 2019/1/1

Y1 - 2019/1/1

N2 - We investigated the validity of infrared tympanic temperature (IR-Tty) during exercise in the heat with variations in solar radiation. Eight healthy males completed stationary cycling trials at 70% peak oxygen uptake until exhaustion in an environmental chamber maintained at 30°C with 50% relative humidity. Three solar radiation conditions, 0, 250 and 500 W/m2, were tested using a ceiling-mounted solar simulator (metal-halide lamps) over a 3 × 2 m irradiated area. IR-Tty and rectal temperature (Tre) were similar before and during exercise in each trial (P > 0.05). Spearman’s rank correlation coefficient (rs) demonstrated very strong (250 W/m2, rs = 0.87) and strong (0 W/m2, rs = 0.73; 500 W/m2, rs = 0.78) correlations between IR-Tty and Tre in all trials (P < 0.001). A Bland-Altman plot showed that mean differences (SD; 95% limits of agreement; root mean square error) between IR-Tty and Tre were − 0.11°C (0.46; − 1.00 to 0.78°C; 0.43 ± 0.16°C) in 0 W/m2, − 0.13°C (0.32; − 0.77 to 0.50°C; 0.32 ± 0.10°C) in 250 W/m2 and − 0.03°C (0.60; − 1.21 to 1.14°C; 0.46 ± 0.27°C) in 500 W/m2. A positive correlation was found in 500 W/m2 (rs = 0.51; P < 0.001) but not in 250 W/m2 (rs = 0.04; P = 0.762) and 0 W/m2 (rs = 0.04; P = 0.732), indicating a greater elevation in IR-Tty than Tre in 500 W/m2. Percentage of target attainment within ± 0.3°C between IR-Tty and Tre was higher in 250 W/m2 (100 ± 0%) than 0 (93 ± 7%) and 500 (90 ± 10%; P < 0.05) W/m2. IR-Tty is acceptable for core temperature monitoring during exercise in the heat when solar radiation is ≤ 500 W/m2, and its accuracy increases when solar radiation is 250 W/m2 under our study conditions.

AB - We investigated the validity of infrared tympanic temperature (IR-Tty) during exercise in the heat with variations in solar radiation. Eight healthy males completed stationary cycling trials at 70% peak oxygen uptake until exhaustion in an environmental chamber maintained at 30°C with 50% relative humidity. Three solar radiation conditions, 0, 250 and 500 W/m2, were tested using a ceiling-mounted solar simulator (metal-halide lamps) over a 3 × 2 m irradiated area. IR-Tty and rectal temperature (Tre) were similar before and during exercise in each trial (P > 0.05). Spearman’s rank correlation coefficient (rs) demonstrated very strong (250 W/m2, rs = 0.87) and strong (0 W/m2, rs = 0.73; 500 W/m2, rs = 0.78) correlations between IR-Tty and Tre in all trials (P < 0.001). A Bland-Altman plot showed that mean differences (SD; 95% limits of agreement; root mean square error) between IR-Tty and Tre were − 0.11°C (0.46; − 1.00 to 0.78°C; 0.43 ± 0.16°C) in 0 W/m2, − 0.13°C (0.32; − 0.77 to 0.50°C; 0.32 ± 0.10°C) in 250 W/m2 and − 0.03°C (0.60; − 1.21 to 1.14°C; 0.46 ± 0.27°C) in 500 W/m2. A positive correlation was found in 500 W/m2 (rs = 0.51; P < 0.001) but not in 250 W/m2 (rs = 0.04; P = 0.762) and 0 W/m2 (rs = 0.04; P = 0.732), indicating a greater elevation in IR-Tty than Tre in 500 W/m2. Percentage of target attainment within ± 0.3°C between IR-Tty and Tre was higher in 250 W/m2 (100 ± 0%) than 0 (93 ± 7%) and 500 (90 ± 10%; P < 0.05) W/m2. IR-Tty is acceptable for core temperature monitoring during exercise in the heat when solar radiation is ≤ 500 W/m2, and its accuracy increases when solar radiation is 250 W/m2 under our study conditions.

KW - Core temperature

KW - Heat stress

KW - Physical activity

KW - Sunlight

UR - http://www.scopus.com/inward/record.url?scp=85072117460&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85072117460&partnerID=8YFLogxK

U2 - 10.1007/s00484-019-01791-1

DO - 10.1007/s00484-019-01791-1

M3 - Article

JO - International Journal of Biometeorology

JF - International Journal of Biometeorology

SN - 0020-7128

ER -