Space-time behavior of propagators for Schrödinger evolution equations with Stark effect

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

We give a detailed description of the space-time behavior of the unitary propagator {U(t,s); t, s ε{lunate} R} determined by the Schrödinger evolution equation i∂tu = - 1 2Δu + E · xu + V(t, x)u, t ε{lunate} R, x ε{lunate} Rn, where E is a homogeneous electric field and V is a time-dependent potential.

Original languageEnglish
Pages (from-to)264-292
Number of pages29
JournalJournal of Functional Analysis
Volume97
Issue number2
DOIs
Publication statusPublished - 1991 May 1
Externally publishedYes

Fingerprint

Propagator
Evolution Equation
Electric Field
Space-time

ASJC Scopus subject areas

  • Analysis

Cite this

Space-time behavior of propagators for Schrödinger evolution equations with Stark effect. / Ozawa, Tohru.

In: Journal of Functional Analysis, Vol. 97, No. 2, 01.05.1991, p. 264-292.

Research output: Contribution to journalArticle

@article{8d88448d3e4d42c7a7562b79eb8c0d9e,
title = "Space-time behavior of propagators for Schr{\"o}dinger evolution equations with Stark effect",
abstract = "We give a detailed description of the space-time behavior of the unitary propagator {U(t,s); t, s ε{lunate} R} determined by the Schr{\"o}dinger evolution equation i∂tu = - 1 2Δu + E · xu + V(t, x)u, t ε{lunate} R, x ε{lunate} Rn, where E is a homogeneous electric field and V is a time-dependent potential.",
author = "Tohru Ozawa",
year = "1991",
month = "5",
day = "1",
doi = "10.1016/0022-1236(91)90002-M",
language = "English",
volume = "97",
pages = "264--292",
journal = "Journal of Functional Analysis",
issn = "0022-1236",
publisher = "Academic Press Inc.",
number = "2",

}

TY - JOUR

T1 - Space-time behavior of propagators for Schrödinger evolution equations with Stark effect

AU - Ozawa, Tohru

PY - 1991/5/1

Y1 - 1991/5/1

N2 - We give a detailed description of the space-time behavior of the unitary propagator {U(t,s); t, s ε{lunate} R} determined by the Schrödinger evolution equation i∂tu = - 1 2Δu + E · xu + V(t, x)u, t ε{lunate} R, x ε{lunate} Rn, where E is a homogeneous electric field and V is a time-dependent potential.

AB - We give a detailed description of the space-time behavior of the unitary propagator {U(t,s); t, s ε{lunate} R} determined by the Schrödinger evolution equation i∂tu = - 1 2Δu + E · xu + V(t, x)u, t ε{lunate} R, x ε{lunate} Rn, where E is a homogeneous electric field and V is a time-dependent potential.

UR - http://www.scopus.com/inward/record.url?scp=0041011116&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0041011116&partnerID=8YFLogxK

U2 - 10.1016/0022-1236(91)90002-M

DO - 10.1016/0022-1236(91)90002-M

M3 - Article

AN - SCOPUS:0041011116

VL - 97

SP - 264

EP - 292

JO - Journal of Functional Analysis

JF - Journal of Functional Analysis

SN - 0022-1236

IS - 2

ER -