Spaces which admit ar-resolutions

Akira Koyama, S. Mardešić, T. Watanabe

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

It is proved that a topological space X admits an AR-resolution (in the sense of [6]) if and only if X has trivial (strong) shape.

Original languageEnglish
Pages (from-to)749-752
Number of pages4
JournalProceedings of the American Mathematical Society
Volume102
Issue number3
DOIs
Publication statusPublished - 1988
Externally publishedYes

Fingerprint

Topological space
Trivial
If and only if

Keywords

  • AR-spaces
  • Inverse limit
  • Resolution
  • Shape
  • Strong shape

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Cite this

Spaces which admit ar-resolutions. / Koyama, Akira; Mardešić, S.; Watanabe, T.

In: Proceedings of the American Mathematical Society, Vol. 102, No. 3, 1988, p. 749-752.

Research output: Contribution to journalArticle

Koyama, Akira ; Mardešić, S. ; Watanabe, T. / Spaces which admit ar-resolutions. In: Proceedings of the American Mathematical Society. 1988 ; Vol. 102, No. 3. pp. 749-752.
@article{cdefda4f94c147c0ad12dbacc9477ec7,
title = "Spaces which admit ar-resolutions",
abstract = "It is proved that a topological space X admits an AR-resolution (in the sense of [6]) if and only if X has trivial (strong) shape.",
keywords = "AR-spaces, Inverse limit, Resolution, Shape, Strong shape",
author = "Akira Koyama and S. Mardešić and T. Watanabe",
year = "1988",
doi = "10.1090/s0002-9939-1988-0929015-6",
language = "English",
volume = "102",
pages = "749--752",
journal = "Proceedings of the American Mathematical Society",
issn = "0002-9939",
publisher = "American Mathematical Society",
number = "3",

}

TY - JOUR

T1 - Spaces which admit ar-resolutions

AU - Koyama, Akira

AU - Mardešić, S.

AU - Watanabe, T.

PY - 1988

Y1 - 1988

N2 - It is proved that a topological space X admits an AR-resolution (in the sense of [6]) if and only if X has trivial (strong) shape.

AB - It is proved that a topological space X admits an AR-resolution (in the sense of [6]) if and only if X has trivial (strong) shape.

KW - AR-spaces

KW - Inverse limit

KW - Resolution

KW - Shape

KW - Strong shape

UR - http://www.scopus.com/inward/record.url?scp=84966211877&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84966211877&partnerID=8YFLogxK

U2 - 10.1090/s0002-9939-1988-0929015-6

DO - 10.1090/s0002-9939-1988-0929015-6

M3 - Article

AN - SCOPUS:84966211877

VL - 102

SP - 749

EP - 752

JO - Proceedings of the American Mathematical Society

JF - Proceedings of the American Mathematical Society

SN - 0002-9939

IS - 3

ER -