TY - CHAP
T1 - Space–Time computational analysis of tire aerodynamics with actual geometry, road contact, and tire deformation
AU - Kuraishi, Takashi
AU - Takizawa, Kenji
AU - Tezduyar, Tayfun E.
N1 - Funding Information:
Acknowledgements This work was supported (first and second authors) in part by Grant-in-Aid for Challenging Exploratory Research 16K13779 from JSPS; Grant-in-Aid for Scientific Research (S) 26220002 from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT); Council for Science, Technology and Innovation (CSTI), Cross-Ministerial Strategic Innovation Promotion Program (SIP), “Innovative Combustion Technology” (Funding agency: JST); and Rice–Waseda research agreement. The computational method parts of the work were also supported (third author) in part by ARO Grant W911NF-17-1-0046 and Top Global University Project of Waseda University. The tire deformation used in Sect. 5 was provided by Bridgestone.
Publisher Copyright:
© 2018, Springer Nature Switzerland AG.
PY - 2018
Y1 - 2018
N2 - A new space–time (ST) computational method, “ST-SI-TC-IGA,” is enabling us to address the challenges faced in computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation. The core component of the ST-SI-TC-IGA is the ST Variational Multiscale (ST-VMS) method, and the other key components are the ST Slip Interface (ST-SI) and ST Topology Change (ST-TC) methods and the ST Isogeometric Analysis (ST-IGA). The VMS feature of the ST-VMS addresses the challenge created by the turbulent nature of the flow, the moving-mesh feature of the ST framework enables high-resolution computation near the moving fluid–solid interfaces, and the higher-order accuracy of the ST framework strengthens both features. The ST-SI enables high-resolution representation of the boundary layers near the tire. The mesh covering the tire spins with it, and the SI between the spinning mesh and the rest of the mesh accurately connects the two sides of the solution. The ST-TC enables moving-mesh computation even with the TC created by the contact between the tire and the road. It deals with the contact while maintaining high-resolution representation near the tire. Integration of the ST-SI and ST-TC enables high-resolution representation even though parts of the SI are coinciding with the tire and road surfaces. It also enables dealing with the tire-road contact location change and contact sliding. By integrating the ST-IGA with the ST-SI and ST-TC, in addition to having a more accurate representation of the tire surfaces and increased accuracy in the flow solution, the element density in the tire grooves and in the narrow spaces near the contact areas is kept at a reasonable level. We present computations with the ST-SI-TC-IGA and two models of flow around a rotating tire with road contact and prescribed deformation. One is a simple 2D model, and one is a 3D model with an actual tire geometry that includes the longitudinal and transverse grooves. The computations show the effectiveness of the ST-SI-TC-IGA in tire aerodynamics.
AB - A new space–time (ST) computational method, “ST-SI-TC-IGA,” is enabling us to address the challenges faced in computational analysis of tire aerodynamics with actual geometry, road contact and tire deformation. The core component of the ST-SI-TC-IGA is the ST Variational Multiscale (ST-VMS) method, and the other key components are the ST Slip Interface (ST-SI) and ST Topology Change (ST-TC) methods and the ST Isogeometric Analysis (ST-IGA). The VMS feature of the ST-VMS addresses the challenge created by the turbulent nature of the flow, the moving-mesh feature of the ST framework enables high-resolution computation near the moving fluid–solid interfaces, and the higher-order accuracy of the ST framework strengthens both features. The ST-SI enables high-resolution representation of the boundary layers near the tire. The mesh covering the tire spins with it, and the SI between the spinning mesh and the rest of the mesh accurately connects the two sides of the solution. The ST-TC enables moving-mesh computation even with the TC created by the contact between the tire and the road. It deals with the contact while maintaining high-resolution representation near the tire. Integration of the ST-SI and ST-TC enables high-resolution representation even though parts of the SI are coinciding with the tire and road surfaces. It also enables dealing with the tire-road contact location change and contact sliding. By integrating the ST-IGA with the ST-SI and ST-TC, in addition to having a more accurate representation of the tire surfaces and increased accuracy in the flow solution, the element density in the tire grooves and in the narrow spaces near the contact areas is kept at a reasonable level. We present computations with the ST-SI-TC-IGA and two models of flow around a rotating tire with road contact and prescribed deformation. One is a simple 2D model, and one is a 3D model with an actual tire geometry that includes the longitudinal and transverse grooves. The computations show the effectiveness of the ST-SI-TC-IGA in tire aerodynamics.
UR - http://www.scopus.com/inward/record.url?scp=85055856149&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85055856149&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-96469-0_8
DO - 10.1007/978-3-319-96469-0_8
M3 - Chapter
AN - SCOPUS:85055856149
T3 - Modeling and Simulation in Science, Engineering and Technology
SP - 337
EP - 376
BT - Modeling and Simulation in Science, Engineering and Technology
PB - Springer Basel
ER -