Spin-Orbit-Torque Switching of Noncollinear Antiferromagnetic Antiperovskite Manganese Nitride Mn3Ga N

T. Hajiri, K. Matsuura, K. Sonoda, E. Tanaka, K. Ueda, H. Asano

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)


Noncollinear antiferromagnets have promising potential for replacing ferromagnets in the field of spintronics as high-density devices with ultrafast operation. To take full advantage of noncollinear antiferromagnets in spintronics applications, it is important to achieve efficient manipulation of noncollinear antiferromagnetic spin. Here, using the anomalous Hall effect as an electrical signal of the triangular magnetic configuration, spin-orbit-Torque switching with no external magnetic field is demonstrated in noncollinear antiferromagnetic antiperovskite manganese nitride Mn3GaN at room temperature. The pulse-width dependence and subsequent relaxation of Hall signal behavior indicate that the spin-orbit torque plays a more important role than the thermal contribution due to pulse injection. In addition, multistate memristive switching with respect to pulse current density is observed. The findings advance the effective control of noncollinear antiferromagnetic spin, facilitating the use of such materials in antiferromagnetic spintronics and neuromorphic computing applications.

Original languageEnglish
Article number024003
JournalPhysical Review Applied
Issue number2
Publication statusPublished - 2021 Aug
Externally publishedYes

ASJC Scopus subject areas

  • Physics and Astronomy(all)


Dive into the research topics of 'Spin-Orbit-Torque Switching of Noncollinear Antiferromagnetic Antiperovskite Manganese Nitride Mn3Ga N'. Together they form a unique fingerprint.

Cite this