Statistical empirical index of chemical weathering in igneous rocks

A new tool for evaluating the degree of weathering

Research output: Contribution to journalArticle

118 Citations (Scopus)

Abstract

Chemical weathering indices are useful tools in characterizing weathering profiles and determining the extent of weathering. However, the predictive performance of the conventional indices is critically dependent on the composition of the unweathered parent rock. To overcome this limitation, the present paper introduces an alternative statistical empirical index of chemical weathering that is extracted by the principal component analysis (PCA) of a large dataset derived from unweathered igneous rocks and their weathering profiles. The PCA analysis yields two principal components (PC1 and PC2), which capture 39.23% and 35.17% of total variability, respectively. The extent of weathering is reflected by variation along PC1, primarily due to the loss of Na2O and CaO during weathering. In contrast, PC2 is the direction along which the projections of unweathered felsic, intermediate and mafic igneous rocks appear to be best discriminated; therefore, PC1 and PC2 represent independent latent variables that correspond to the extent of weathering and the chemistry of the unweathered parent rock. Subsequently, PC1 and PC2 were then mapped onto a ternary diagram (MFW diagram). The M and F vertices characterize mafic and felsic rock source, respectively, while the W vertex identifies the degree of weathering of these sources, independent of the chemistry of the unweathered parent rock. The W index has a number of significant properties that are not found in conventional weathering indices. First, the W index is sensitive to chemical changes that occur during weathering because it is based on eight major oxides, whereas most conventional indices are defined by between two and four oxides. Second, the W index provides robust results even for highly weathered sesquioxide-rich samples. Third, the W index is applicable to a wide range of felsic, intermediate and mafic igneous rock types. Finally, the MFW diagram is expected to facilitate provenance analysis of sedimentary rocks by identifying their weathering trends and thereby enabling a backward estimate of the composition of the unweathered source rock.

Original languageEnglish
Pages (from-to)280-297
Number of pages18
JournalChemical Geology
Volume240
Issue number3-4
DOIs
Publication statusPublished - 2007 Jun 15

Fingerprint

Igneous rocks
chemical weathering
Weathering
igneous rock
weathering
mafic rock
Rocks
weathering profile
diagram
principal component analysis
oxide
rock
Principal component analysis
Oxides
index
felsic rock
Sedimentary rocks
source rock
provenance
sedimentary rock

Keywords

  • Chemical weathering
  • Logratio analysis
  • Principal component analysis
  • Weathering index

ASJC Scopus subject areas

  • Geochemistry and Petrology

Cite this

@article{65063002c5cb4884b0543a2df192067a,
title = "Statistical empirical index of chemical weathering in igneous rocks: A new tool for evaluating the degree of weathering",
abstract = "Chemical weathering indices are useful tools in characterizing weathering profiles and determining the extent of weathering. However, the predictive performance of the conventional indices is critically dependent on the composition of the unweathered parent rock. To overcome this limitation, the present paper introduces an alternative statistical empirical index of chemical weathering that is extracted by the principal component analysis (PCA) of a large dataset derived from unweathered igneous rocks and their weathering profiles. The PCA analysis yields two principal components (PC1 and PC2), which capture 39.23{\%} and 35.17{\%} of total variability, respectively. The extent of weathering is reflected by variation along PC1, primarily due to the loss of Na2O and CaO during weathering. In contrast, PC2 is the direction along which the projections of unweathered felsic, intermediate and mafic igneous rocks appear to be best discriminated; therefore, PC1 and PC2 represent independent latent variables that correspond to the extent of weathering and the chemistry of the unweathered parent rock. Subsequently, PC1 and PC2 were then mapped onto a ternary diagram (MFW diagram). The M and F vertices characterize mafic and felsic rock source, respectively, while the W vertex identifies the degree of weathering of these sources, independent of the chemistry of the unweathered parent rock. The W index has a number of significant properties that are not found in conventional weathering indices. First, the W index is sensitive to chemical changes that occur during weathering because it is based on eight major oxides, whereas most conventional indices are defined by between two and four oxides. Second, the W index provides robust results even for highly weathered sesquioxide-rich samples. Third, the W index is applicable to a wide range of felsic, intermediate and mafic igneous rock types. Finally, the MFW diagram is expected to facilitate provenance analysis of sedimentary rocks by identifying their weathering trends and thereby enabling a backward estimate of the composition of the unweathered source rock.",
keywords = "Chemical weathering, Logratio analysis, Principal component analysis, Weathering index",
author = "Tohru Ohta and Hiroyoshi Arai",
year = "2007",
month = "6",
day = "15",
doi = "10.1016/j.chemgeo.2007.02.017",
language = "English",
volume = "240",
pages = "280--297",
journal = "Chemical Geology",
issn = "0009-2541",
publisher = "Elsevier",
number = "3-4",

}

TY - JOUR

T1 - Statistical empirical index of chemical weathering in igneous rocks

T2 - A new tool for evaluating the degree of weathering

AU - Ohta, Tohru

AU - Arai, Hiroyoshi

PY - 2007/6/15

Y1 - 2007/6/15

N2 - Chemical weathering indices are useful tools in characterizing weathering profiles and determining the extent of weathering. However, the predictive performance of the conventional indices is critically dependent on the composition of the unweathered parent rock. To overcome this limitation, the present paper introduces an alternative statistical empirical index of chemical weathering that is extracted by the principal component analysis (PCA) of a large dataset derived from unweathered igneous rocks and their weathering profiles. The PCA analysis yields two principal components (PC1 and PC2), which capture 39.23% and 35.17% of total variability, respectively. The extent of weathering is reflected by variation along PC1, primarily due to the loss of Na2O and CaO during weathering. In contrast, PC2 is the direction along which the projections of unweathered felsic, intermediate and mafic igneous rocks appear to be best discriminated; therefore, PC1 and PC2 represent independent latent variables that correspond to the extent of weathering and the chemistry of the unweathered parent rock. Subsequently, PC1 and PC2 were then mapped onto a ternary diagram (MFW diagram). The M and F vertices characterize mafic and felsic rock source, respectively, while the W vertex identifies the degree of weathering of these sources, independent of the chemistry of the unweathered parent rock. The W index has a number of significant properties that are not found in conventional weathering indices. First, the W index is sensitive to chemical changes that occur during weathering because it is based on eight major oxides, whereas most conventional indices are defined by between two and four oxides. Second, the W index provides robust results even for highly weathered sesquioxide-rich samples. Third, the W index is applicable to a wide range of felsic, intermediate and mafic igneous rock types. Finally, the MFW diagram is expected to facilitate provenance analysis of sedimentary rocks by identifying their weathering trends and thereby enabling a backward estimate of the composition of the unweathered source rock.

AB - Chemical weathering indices are useful tools in characterizing weathering profiles and determining the extent of weathering. However, the predictive performance of the conventional indices is critically dependent on the composition of the unweathered parent rock. To overcome this limitation, the present paper introduces an alternative statistical empirical index of chemical weathering that is extracted by the principal component analysis (PCA) of a large dataset derived from unweathered igneous rocks and their weathering profiles. The PCA analysis yields two principal components (PC1 and PC2), which capture 39.23% and 35.17% of total variability, respectively. The extent of weathering is reflected by variation along PC1, primarily due to the loss of Na2O and CaO during weathering. In contrast, PC2 is the direction along which the projections of unweathered felsic, intermediate and mafic igneous rocks appear to be best discriminated; therefore, PC1 and PC2 represent independent latent variables that correspond to the extent of weathering and the chemistry of the unweathered parent rock. Subsequently, PC1 and PC2 were then mapped onto a ternary diagram (MFW diagram). The M and F vertices characterize mafic and felsic rock source, respectively, while the W vertex identifies the degree of weathering of these sources, independent of the chemistry of the unweathered parent rock. The W index has a number of significant properties that are not found in conventional weathering indices. First, the W index is sensitive to chemical changes that occur during weathering because it is based on eight major oxides, whereas most conventional indices are defined by between two and four oxides. Second, the W index provides robust results even for highly weathered sesquioxide-rich samples. Third, the W index is applicable to a wide range of felsic, intermediate and mafic igneous rock types. Finally, the MFW diagram is expected to facilitate provenance analysis of sedimentary rocks by identifying their weathering trends and thereby enabling a backward estimate of the composition of the unweathered source rock.

KW - Chemical weathering

KW - Logratio analysis

KW - Principal component analysis

KW - Weathering index

UR - http://www.scopus.com/inward/record.url?scp=34247588556&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34247588556&partnerID=8YFLogxK

U2 - 10.1016/j.chemgeo.2007.02.017

DO - 10.1016/j.chemgeo.2007.02.017

M3 - Article

VL - 240

SP - 280

EP - 297

JO - Chemical Geology

JF - Chemical Geology

SN - 0009-2541

IS - 3-4

ER -