Structural analysis of thermally induced stick-slip on deployable mast

Shunnosuke Shimizu, Kosei Ishimura, Victor Parque Tenorio, Tomoyuki Miyashita

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Large space structures tend to be flexible because only a few dimensions become large while material properties become constant. For flexible structures, even minute disturbances affect the movement of the structure. For the sake of precise observation in space, large structures with stable dynamic properties are required to support sensors. The stability of the structures is affected by the thermal expansion caused by solar radiation. The purpose of this research is to verify the compatibility between numerical analyses and experimental results for a mast structure with thermally induced stick-slip phenomenon at friction sliding part. Radiation heating experiments for the mast structure, and numerical analyses using finite element method with several friction models at contact surface among parts in the mast were discussed. Three friction models are: (a) coulomb model, (b) simplified coulomb model, and (c) rising static friction model. Comparing each friction model, modeling on thermally induced stick-slip occurring in the space structure is studied. The coulomb model and the rising static friction model showed thermally induced stick-slip behavior. However, the simplified coulomb model did not show such behaviors. Finally, several methods were proposed to decrease the disturbance due to thermally induced stick-slip.

Original languageEnglish
Title of host publicationAIAA Scitech 2019 Forum
PublisherAmerican Institute of Aeronautics and Astronautics Inc, AIAA
ISBN (Print)9781624105784
DOIs
Publication statusPublished - 2019 Jan 1
EventAIAA Scitech Forum, 2019 - San Diego, United States
Duration: 2019 Jan 72019 Jan 11

Publication series

NameAIAA Scitech 2019 Forum

Conference

ConferenceAIAA Scitech Forum, 2019
CountryUnited States
CitySan Diego
Period19/1/719/1/11

Fingerprint

Stick-slip
Structural analysis
Friction
Flexible structures
Solar radiation
Thermal expansion
Materials properties
Finite element method
Radiation
Heating

ASJC Scopus subject areas

  • Aerospace Engineering

Cite this

Shimizu, S., Ishimura, K., Parque Tenorio, V., & Miyashita, T. (2019). Structural analysis of thermally induced stick-slip on deployable mast. In AIAA Scitech 2019 Forum (AIAA Scitech 2019 Forum). American Institute of Aeronautics and Astronautics Inc, AIAA. https://doi.org/10.2514/6.2019-1025

Structural analysis of thermally induced stick-slip on deployable mast. / Shimizu, Shunnosuke; Ishimura, Kosei; Parque Tenorio, Victor; Miyashita, Tomoyuki.

AIAA Scitech 2019 Forum. American Institute of Aeronautics and Astronautics Inc, AIAA, 2019. (AIAA Scitech 2019 Forum).

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Shimizu, S, Ishimura, K, Parque Tenorio, V & Miyashita, T 2019, Structural analysis of thermally induced stick-slip on deployable mast. in AIAA Scitech 2019 Forum. AIAA Scitech 2019 Forum, American Institute of Aeronautics and Astronautics Inc, AIAA, AIAA Scitech Forum, 2019, San Diego, United States, 19/1/7. https://doi.org/10.2514/6.2019-1025
Shimizu S, Ishimura K, Parque Tenorio V, Miyashita T. Structural analysis of thermally induced stick-slip on deployable mast. In AIAA Scitech 2019 Forum. American Institute of Aeronautics and Astronautics Inc, AIAA. 2019. (AIAA Scitech 2019 Forum). https://doi.org/10.2514/6.2019-1025
Shimizu, Shunnosuke ; Ishimura, Kosei ; Parque Tenorio, Victor ; Miyashita, Tomoyuki. / Structural analysis of thermally induced stick-slip on deployable mast. AIAA Scitech 2019 Forum. American Institute of Aeronautics and Astronautics Inc, AIAA, 2019. (AIAA Scitech 2019 Forum).
@inproceedings{84155d5d476a45f0a5d044bc59d6bfdc,
title = "Structural analysis of thermally induced stick-slip on deployable mast",
abstract = "Large space structures tend to be flexible because only a few dimensions become large while material properties become constant. For flexible structures, even minute disturbances affect the movement of the structure. For the sake of precise observation in space, large structures with stable dynamic properties are required to support sensors. The stability of the structures is affected by the thermal expansion caused by solar radiation. The purpose of this research is to verify the compatibility between numerical analyses and experimental results for a mast structure with thermally induced stick-slip phenomenon at friction sliding part. Radiation heating experiments for the mast structure, and numerical analyses using finite element method with several friction models at contact surface among parts in the mast were discussed. Three friction models are: (a) coulomb model, (b) simplified coulomb model, and (c) rising static friction model. Comparing each friction model, modeling on thermally induced stick-slip occurring in the space structure is studied. The coulomb model and the rising static friction model showed thermally induced stick-slip behavior. However, the simplified coulomb model did not show such behaviors. Finally, several methods were proposed to decrease the disturbance due to thermally induced stick-slip.",
author = "Shunnosuke Shimizu and Kosei Ishimura and {Parque Tenorio}, Victor and Tomoyuki Miyashita",
year = "2019",
month = "1",
day = "1",
doi = "10.2514/6.2019-1025",
language = "English",
isbn = "9781624105784",
series = "AIAA Scitech 2019 Forum",
publisher = "American Institute of Aeronautics and Astronautics Inc, AIAA",
booktitle = "AIAA Scitech 2019 Forum",

}

TY - GEN

T1 - Structural analysis of thermally induced stick-slip on deployable mast

AU - Shimizu, Shunnosuke

AU - Ishimura, Kosei

AU - Parque Tenorio, Victor

AU - Miyashita, Tomoyuki

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Large space structures tend to be flexible because only a few dimensions become large while material properties become constant. For flexible structures, even minute disturbances affect the movement of the structure. For the sake of precise observation in space, large structures with stable dynamic properties are required to support sensors. The stability of the structures is affected by the thermal expansion caused by solar radiation. The purpose of this research is to verify the compatibility between numerical analyses and experimental results for a mast structure with thermally induced stick-slip phenomenon at friction sliding part. Radiation heating experiments for the mast structure, and numerical analyses using finite element method with several friction models at contact surface among parts in the mast were discussed. Three friction models are: (a) coulomb model, (b) simplified coulomb model, and (c) rising static friction model. Comparing each friction model, modeling on thermally induced stick-slip occurring in the space structure is studied. The coulomb model and the rising static friction model showed thermally induced stick-slip behavior. However, the simplified coulomb model did not show such behaviors. Finally, several methods were proposed to decrease the disturbance due to thermally induced stick-slip.

AB - Large space structures tend to be flexible because only a few dimensions become large while material properties become constant. For flexible structures, even minute disturbances affect the movement of the structure. For the sake of precise observation in space, large structures with stable dynamic properties are required to support sensors. The stability of the structures is affected by the thermal expansion caused by solar radiation. The purpose of this research is to verify the compatibility between numerical analyses and experimental results for a mast structure with thermally induced stick-slip phenomenon at friction sliding part. Radiation heating experiments for the mast structure, and numerical analyses using finite element method with several friction models at contact surface among parts in the mast were discussed. Three friction models are: (a) coulomb model, (b) simplified coulomb model, and (c) rising static friction model. Comparing each friction model, modeling on thermally induced stick-slip occurring in the space structure is studied. The coulomb model and the rising static friction model showed thermally induced stick-slip behavior. However, the simplified coulomb model did not show such behaviors. Finally, several methods were proposed to decrease the disturbance due to thermally induced stick-slip.

UR - http://www.scopus.com/inward/record.url?scp=85068480626&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85068480626&partnerID=8YFLogxK

U2 - 10.2514/6.2019-1025

DO - 10.2514/6.2019-1025

M3 - Conference contribution

SN - 9781624105784

T3 - AIAA Scitech 2019 Forum

BT - AIAA Scitech 2019 Forum

PB - American Institute of Aeronautics and Astronautics Inc, AIAA

ER -