11B-NMR study in boron-doped diamond films

H. Mukuda*, T. Tsuchida, A. Harada, Y. Kitaoka, T. Takenouchi, Y. Takano, M. Nagao, I. Sakaguchi, H. Kawarada

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)


We have investigated an origin of the superconductivity discovered in boron (B)-doped diamonds by means of 11B-NMR on heteroepitaxially grown (1 1 1) and (1 0 0) films and polycrystalline film. The characteristic difference of B-NMR spectral shape for the (1 1 1) and (1 0 0) thin films is demonstrated as arising from the difference in the concentration (nB (1)) of boron substituted for carbon. It is revealed from a scaling between a superconducting transition temperature Tc and nB (1) that the holes doped into diamond via the substitution of boron for carbon are responsible for the onset of superconductivity. The result suggests that the superconductivity in boron-doped diamond is mediated by the electron-phonon interaction brought about a high Debye temperature ∼ 1860 K characteristic for the diamond structure.

Original languageEnglish
Pages (from-to)S37-S40
JournalScience and Technology of Advanced Materials
Issue numberSUPPL. 1
Publication statusPublished - 2006

ASJC Scopus subject areas

  • Materials Science(all)


Dive into the research topics of '11B-NMR study in boron-doped diamond films'. Together they form a unique fingerprint.

Cite this